ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability of Optical Counterparts in the Chandra Galactic Bulge Survey

139   0   0.0 ( 0 )
 نشر من قبل Christopher Britt
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical lightcurves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey. Using data from the Mosaic-II instrument on the Blanco 4m Telescope at CTIO, we gathered time-resolved photometric data on timescales from $sim2$ hr to 8 days over the $frac{3}{4}$ of the X-ray survey containing sources from the initial GBS catalog. Among the lightcurve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. $87%$ of X-ray sources have at least one potential optical counterpart. $24%$ of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.



قيم البحث

اقرأ أيضاً

As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centered at Galactic latitude b = 1.5 degrees above and below the Galactic Centre, spanning (l x b) = (6x 1) degrees. The catalogue consists of 2 or more epochs of observations for each line of sight in r, i and H{alpha} filters. It is complete down to r = 20.2 and i = 19.2 mag; the mean 5{sigma} depth is r = 22.5 and i = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ~ 10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all optical sources within the 4{sigma} X-ray error circle. This analysis yields 1480 potential counterparts (~ 90 per cent of the sample). 584 counterparts have saturated photometry (r<17, i<16), indicating these objects are likely foreground sources and the real counterparts. 171 candidate counterparts are detected only in the i-band. These sources are good qLMXB and CV candidates as they are X-ray bright and likely located in the Bulge.
(Abridged:) We present the identification of optical counterparts to 23 Galactic Bulge Survey X-ray sources. We report their accurate coordinates and optical spectra acquired at the VLT and Magellan. All sources are classified as accreting binaries a ccording to their emission line characteristics. To distinguish accreting binaries from chromospherically active objects we develop and explain criteria based on Halpha and HeI 5786,6678 emission line properties available in the literature. The spectroscopic properties and photometric variability of all the objects are discussed and a classification of the source is given where possible. Among the 23 systems, at least 9 of them show an accretion-dominated optical spectrum (CX28, CX63, CX70, CX128, CX142, CX207, CX522, CX794, CX1011) and another 6 show photospheric lines from a late-type donor star in addition to accretion disc emission (CX44, CX93, CX137, CX154, CX377 and CX1004) indicating that they are probably accreting binaries in quiescence or in a low accretion rate state. Two sources are confirmed to be eclipsing: CX207 and CX794. CX207 shows a broad asymmetric Halpha profile blue-shifted by >300 km/s. Such line profile characteristics are consistent with a magnetic (Polar) CV. CX794 is an eclipsing nova-like CV in the period gap. Time-resolved photometry and the large broadening of the Halpha emission lines in CX446 (2100 km/s FWHM) suggest that this is also an eclipsing or high-inclination accreting binary. Finally, the low-accretion rate source CX1004 shows a double-peaked Halpha profile with a FWHM of 2100 km/s. This supports a high inclination or even eclipsing system. Whether the compact object is a white dwarf in an eclipsing CV or a black hole primary in a high-inclination LMXB remains to be established.
Cosmological models predict the oldest stars in the Galaxy should be found closest to the centre of the potential well, in the bulge. The EMBLA Survey successfully searched for these old, metal-poor stars by making use of the distinctive SkyMapper ph otometric filters to discover candidate metal-poor stars in the bulge. Their metal-poor nature was then confirmed using the AAOmega spectrograph on the AAT. Here we present an abundance analysis of 10 bulge stars with -2.8<[Fe/H]<-1.7 from MIKE/Magellan observations, in total determining the abundances of 22 elements. Combining these results with our previous high-resolution data taken as part of the Gaia-ESO Survey, we have started to put together a picture of the chemical and kinematic nature of the most metal-poor stars in the bulge. The currently available kinematic data is consistent with the stars belonging to the bulge, although more accurate measurements are needed to constrain the stars orbits. The chemistry of these bulge stars deviates from that found in halo stars of the same metallicity. Two notable differences are the absence of carbon-enhanced metal-poor bulge stars, and the alpha-element abundances exhibit a large intrinsic scatter and include stars which are underabundant in these typically enhanced elements.
188 - Yue Zhao 2020
We present a deep ($sim 330~mathrm{ks}$) {it Chandra} survey of the Galactic globular cluster M30 (NGC 7099). Combining the new Cycle 18 with the previous Cycle 3 observations we report a total of 10 new X-ray point sources within the $1.03$ arcmin h alf-light radius, compiling an extended X-ray catalogue of a total of 23 sources. We incorporate imaging observations by the {it Hubble Space Telescope} and the {it Karl G. Jansky Very Large Array} from the MAVERIC survey to search for optical and radio counterparts to the new and old sources. Two X-ray sources are found to have a radio counterpart, including the known millisecond pulsar PSR J2140$-$2310A, the radio position of which also matches a previously reported faint optical counterpart which is slightly redder than the main sequence. We found optical counterparts to $18$ of the $23$ X-ray sources, identifying $2$ new cataclysmic variables (CVs), $5$ new CV candidates, $2$ new candidates of RS CVn type of active binary (AB), and $2$ new candidates of BY Dra type of AB. The remaining unclassified X-ray sources are likely background active galactic nuclei (AGN), as their number is consistent with the expected number of AGN at our X-ray sensitivity. Finally, our analysis of radial profiles of different source classes suggests that bright CVs are more centrally distributed than faint CVs in M30, consistent with other core-collapsed globular clusters.
We present a sample of 209 variable objects - very likely optical counterparts to the X-ray sources detected in the direction of the Galactic center by the Galactic Bulge Survey (GBS) carried out with the Chandra satellite. The variable sources were found in the databases of the OGLE long term survey monitoring regularly the Galactic bulge since 1992. The counterpart candidates were searched based on the X-ray source position in the radius of 3.9. Optical light curves of the candidates comprise a full variety of variability types: spotted stars, pulsating red giants (potentially secondary stars of symbiotic variables), cataclysmic variables, eclipsing binary systems, irregular non-periodic objects including an AGN (GRS 1734-292). Additionally, we find that positions of 19 non-variable stars brighter than 16.5 mag in the OGLE databases are so well aligned with the X-ray positions (<0.75) that these objects are also likely optical counterparts to the GBS X-ray sources. We provide the OGLE astrometric and photometric information for all selected objects and their preliminary classifications. Photometry of the candidates is available from the OGLE Internet archive, http://ogle.astrouw.edu.pl
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا