ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of parameter mismatch on the synchronization of strongly coupled self sustained oscillators

158   0   0.0 ( 0 )
 نشر من قبل Kantimay Das Gupta
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present an experimental setup and an associated mathematical model to study the synchronization of two self sustained strongly coupled mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes, coupled by placing them on a common base, free to move along a horizontal direction. In our system the mass of the oscillating pendula form a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound clockwork slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base coupling the two. Our results indicate that such a system can be made to stabilize in both in-phase anti-phase synchronized state by tuning the parameter mismatch. Results from both numerical simulations and experimental observations are in qualitative agreement and are both reported in the present work.



قيم البحث

اقرأ أيضاً

We propose a method for detecting the presence of synchronization of self-sustained oscillator by external driving with linearly varying frequency. The method is based on a continuous wavelet transform of the signals of self-sustained oscillator and external force and allows one to distinguish the case of true synchronization from the case of spurious synchronization caused by linear mixing of the signals. We apply the method to driven van der Pol oscillator and to experimental data of human heart rate variability and respiration.
A feasible model is introduced that manifests phenomena intrinsic to iterative complex analytic maps (such as the Mandelbrot set and Julia sets). The system is composed of two coupled alternately excited oscillators (or self-sustained oscillators). T he idea is based on a turn-by-turn transfer of the excitation from one subsystem to another (S.P.~Kuznetsov, Phys.~Rev.~Lett. bf 95 rm, 2005, 144101) accompanied with appropriate nonlinear transformation of the complex amplitude of the oscillations in the course of the process. Analytic and numerical studies are performed. Special attention is paid to an analysis of the violation of the applicability of the slow amplitude method with the decrease in the ratio of the period of the excitation transfer to the basic period of the oscillations. The main effect is the rotation of the Mandelbrot-like set in the complex parameter plane; one more effect is the destruction of subtle small-scale fractal structure of the set due to the presence of non-analytic terms in the complex amplitude equations.
We present a method to determine the relative parameter mismatch in a collection of nearly identical chaotic oscillators by measuring large deviations from the synchronized state. We demonstrate our method with an ensemble of slightly different circl e maps. We discuss how to apply our method when there is noise, and show an example where the noise intensity is comparable to the mismatch.
Recently, a novel mixed-synchronization phenomenon is observed in counter-rotating nonlinear coupled oscillators. In mixed-synchronization state: some variables are synchronized in-phase, while others are out-of-phase. We have experimentally verified the occurrence of mixed-synchronization states in coupled counter-rotating chaotic piecewise Rossler oscillator. Analytical discussion on approximate stability analysis and numerical confirmation on the experimentally observed behavior is also given.
87 - C. Ramya , R. Gopal , R. Suresh 2021
The amplitude-dependent frequency of the oscillations, termed emph{nonisochronicity}, is one of the essential characteristics of nonlinear oscillators. In this paper, the dynamics of the Rossler oscillator in the presence of nonisochronicity is exami ned. In particular, we explore the appearance of a new fixed point and the emergence of a coexisting limit-cycle and quasiperiodic attractors. We also describe the sequence of bifurcations leading to synchronized, desynchronized attractors and oscillation death states in the coupled Rossler oscillators as a function of the strength of nonisochronicity and coupling parameters. Further, we characterize the multistability of the coexisting attractors by plotting the basins of attraction. Our results open up the possibilities of understanding the emergence of coexisting attractors, and into a qualitative change of the collective states in coupled nonlinear oscillators in the presence of nonisochronicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا