ﻻ يوجد ملخص باللغة العربية
The changes in the lifetime of a metastable energy level in Er-doped Si nanocrystals in the presence of an external source of colored noise are analyzed for different values of noise intensity and correlation time. Exciton dynamics is simulated by a set of phenomenological rate equations which take into account all the possible phenomena inherent to the energy states of Si nanocrystals and Er$^{3+}$ ions in the host material of Si oxide. The electronic deexcitation is studied by examining the decay of the initial population of the Er atoms in the first excitation level $^4$I$_{13/2}$ through the fluorescence and the cooperative upconversion by energy transfer. Our results show that the deexcitation process of the level $^4$I$_{13/2}$ is slowed down within wide ranges of noise intensity and correlation time. Moreover, a nonmonotonic behavior of the lifetime with the amplitude of the fluctuations is found, characterized by a maximum variation for values of the noise correlation time comparable to the deexcitation time. The indirect influence of the colored noise on the efficiency of the energy transfer upconversion activated from the level $^4$I$_{13/2}$ is also discussed.
We present a high-resolution photoluminescence study of Er-doped SiO2 sensitized with Si nanocrystals (Si NCs). Emission bands originating from recombination of excitons confined in Si NCs and of internal transitions within the 4f-electron core of Er
Transient properties of different physical systems with metastable states perturbed by external white noise have been investigated. Two noise-induced phenomena, namely the noise enhanced stability and the resonant activation, are theoretically predic
Er-doped aluminum nitride films, containing different Er concentrations, were obtained at room temperature by reactive radio frequency magnetron sputtering. The prepared samples show a nano-columnar microstructure and the size of the columns is depen
Previous observations of metastable magnetic skyrmions have shown that close to the equilibrium pocket the metastable state has a short lifetime, and therefore rapid cooling is required to generate a significant skyrmion population at low temperature
A series of polycrystalline pyrochlore rare-earth titanate Ho_{2-x}Cr_xTi_2O_7 are synthesized in order to enhance the ferroelectricity of pyrochlore Ho2Ti2O7. For the sample close to the doping level x=0.4, a giant enhancement of polarization P up t