ﻻ يوجد ملخص باللغة العربية
We develop a general framework for generating estimators of a given quantity which are unbiased to a given order in the difference between the true value of the underlying quantity and the fiducial position in theory space around which we expand the likelihood. We apply this formalism to rederive the optimal quadratic estimator and show how the replacement of the second derivative matrix with the Fisher matrix is a generic way of creating an unbiased estimator (assuming choice of the fiducial model is independent of data). Next apply the approach to estimation of shear lensing, closely following the work of Bernstein and Armstrong (2014). Our first order estimator reduces to their estimator in the limit of zero shear, but it also naturally allows for the case of non-constant shear and the easy calculation of correlation functions or power spectra using standard methods. Both our first-order estimator and Bernstein and Armstrongs estimator exhibit a bias which is quadratic in true shear. Our third-order estimator is, at least in the realm of the toy problem of Bernstein and Armstrong, unbiased to 0.1% in relative shear errors $Delta g/|g|$ for shears up to $|g|=0.2$.
We investigate the use of data-driven likelihoods to bypass a key assumption made in many scientific analyses, which is that the true likelihood of the data is Gaussian. In particular, we suggest using the optimization targets of flow-based generativ
The galaxy catalogs generated from low-resolution emission line surveys often contain both foreground and background interlopers due to line misidentification, which can bias the cosmological parameter estimation. In this paper, we present a method f
Many methods have been proposed to quantify the predictive uncertainty associated with the outputs of deep neural networks. Among them, ensemble methods often lead to state-of-the-art results, though they require modifications to the training procedu
The maximum mean discrepancy (MMD) is a kernel-based distance between probability distributions useful in many applications (Gretton et al. 2012), bearing a simple estimator with pleasing computational and statistical properties. Being able to effici
We introduce a new estimator of the peculiar velocity of a galaxy or group of galaxies from redshift and distance estimates. This estimator results in peculiar velocity estimates which are statistically unbiased and that have errors that are Gaussian