ﻻ يوجد ملخص باللغة العربية
We present a new deep determination of the spectroscopic LF within the virial radius of the nearby and massive Abell,85 (A85) cluster down to the dwarf regime (M* + 6) using VLT/VIMOS spectra for $sim 2000$ galaxies with m$_r leq 21$ mag and $langle mu_{e,r} rangle leq 24$ mag arcsec$^{-2}$. The resulting LF from 438 cluster members is best modelled by a double Schechter function due to the presence of a statistically significant upturn at the faint-end. The amplitude of this upturn ($alpha_{f} = -1.58^{+0.19}_{-0.15}$), however, is much smaller than that of the SDSS composite photometric cluster LF by Popesso et al. 2006, $alpha_{f} sim$ -2. The faint-end slope of the LF in A85 is consistent, within the uncertainties, with that of the field. The red galaxy population dominates the LF at low luminosities, and is the main responsible for the upturn. The fact that the slopes of the spectroscopic LFs in the field and in a cluster as massive as A85 are similar suggests that the cluster environment does not play a major role in determining the abundance of low-mass galaxies.
We present a new deep spectroscopic catalogue for Abell 85, within 3.0 $times$ 2.6 Mpc$^2$ and down to $M_{r} sim M_{r}^* +6$. Using the Visible Multi-Object Spectrograph at the Very Large Telescope (VIMOS@VLT) and the AutoFiber 2 at the William Hers
Using new Keck DEIMOS spectroscopy, we examine the origin of the steep number counts of ultra-faint emission-line galaxies recently reported by Dressler et al. (2011). We confirm six Lyman Alpha emitters (LAEs), three of which have significant asymme
The Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) is constructing a wide-field map of the resolved stellar populations in the extended halos of these two nearby, prominent galaxies. We present new Magellan/Megacam imaging of a $sim3$ de
(Abridged) Based on numerical simulations of galaxy mergers that incorporate black hole (BH) growth, we predict the faint end slope of the quasar luminosity function (QLF) and its evolution with redshift. Our simulations have yielded a new model for
Aims. We aim to study the 250 micron luminosity function (LF) down to much fainter luminosities than achieved by previous efforts. Methods. We developed a modified stacking method to reconstruct the 250 micron LF using optically selected galaxies f