ﻻ يوجد ملخص باللغة العربية
Compacted pellets of nanocrystalline nickel (NC-Ni) of average particle size ranging from 18 to 33 nm were prepared using a variety of surfactants. They were characterized well and were studied on the influence of the surfactants on the electrical resistivity and thermopower in the temperature range 5 to 300 K. It was found that the type of the surfactant used dominates over the average particle size in their electrical transport and the detail transport behaviors have been discussed. Moreover, the observed thermopower and resistivity features were contrasting compared to what are normally seen in the well-known materials. They are interpreted as indicative of attractive features these surfactants for the design of nanostructured thermoelectric materials with enhanced thermoelectric figure of merits.
The results of magnetic susceptibility, electrical resistivity ($rho$), heat-capacity (C) and thermopower (S) measurements on CeCuAs2, forming in ZrCuSi2-type tetragonal structure, are reported. Our investigations reveal that Ce is trivalent and ther
The influence of the surface structure and vibration mode on the resistivity of Cu films and the corresponding size effect are investigated. The temperature dependent conductivities of the films with different surface morphologies are calculated by t
We have measured the low temperature electrical resistivity of Ag : Mn mesoscopic spin glasses prepared by ion implantation with a concentration of 700 ppm. As expected, we observe a clear maximum in the resistivity (T ) at a temperature in good agre
Polycrystalline Yb substituted NiZn nanoferrites with the compositions of Ni0.5Zn0.5YbxFe2-xO4 (x= 0.00, 0.04, 0.08, 0.12, 0.16 and 0.20) have been synthesized using sol gel auto combustion technique. Single phase cubic spinel structure has been conf
As a canonical response to the applied magnetic field, the electronic states of a metal are fundamentally reorganized into Landau levels. In Dirac metals, Landau levels can be expected without magnetic fields, provided that an inhomogeneous strain is