ترغب بنشر مسار تعليمي؟ اضغط هنا

Using numerical models of bow shocks to investigate the circumstellar medium of massive stars

150   0   0.0 ( 0 )
 نشر من قبل Allard Jan van Marle
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many massive stars travel through the interstellar medium at supersonic speeds. As a result they form bow shocks at the interface between the stellar wind. We use numerical hydrodynamics to reproduce such bow shocks numerically, creating models that can be compared to observations. In this paper we discuss the influence of two physical phenomena, interstellar magnetic fields and the presence of interstellar dust grains on the observable shape of the bow shocks of massive stars. We find that the interstellar magnetic field, though too weak to restrict the general shape of the bow shock, reduces the size of the instabilities that would otherwise be observed in the bow shock of a red supergiant. The interstellar dust grains, due to their inertia can penetrate deep into the bow shock structure of a main sequence O-supergiant, crossing over from the ISM into the stellar wind. Therefore, the dust distribution may not always reflect the morphology of the gas. This is an important consideration for infrared observations, which are dominated by dust emission. Our models clearly show, that the bow shocks of massive stars are useful diagnostic tools that can used to investigate the properties of both the stellar wind as well as the interstellar medium.



قيم البحث

اقرأ أيضاً

411 - J. A. Toala , S. J. Arthur 2011
We study the evolution of the interstellar and circumstellar media around massive stars (M > 40M_{odot}) from the main sequence through to the Wolf-Rayet stage by means of radiationhydrodynamic simulations. We use publicly available stellar evolution models to investigate the different possible structures that can form in the stellar wind bubbles around Wolf-Rayet stars. We find significant differences between models with and without stellar rotation, and between models from different authors. More specifically, we find that the main ingredients in the formation of structures in the Wolf-Rayet wind bubbles are the duration of the Red Supergiant (or Luminous Blue Variable) phase, the amount of mass lost, and the wind velocity during this phase, in agreement with previous authors. Thermal conduction is also included in our models. We find that main-sequence bubbles with thermal conduction are slightly smaller, due to extra cooling which reduces the pressure in the hot, shocked bubble, but that thermal conduction does not appear to significantly influence the formation of structures in post-main-sequence bubbles. Finally, we study the predicted X-ray emission from the models and compare our results with observations of the Wolf-Rayet bubbles S,308, NGC,6888, and RCW,58. We find that bubbles composed primarily of clumps have reduced X-ray luminosity and very soft spectra, while bubbles with shells correspond more closely to observations.
121 - Jonathan Mackey 2013
The nearby red supergiant (RSG) Betelgeuse has a complex circumstellar medium out to at least 0.5 parsecs from its surface, shaped by its mass-loss history within the past 0.1 Myr, its environment, and its motion through the interstellar medium (ISM) . In principle its mass-loss history can be constrained by comparing hydrodynamic models with observations. Observations and numerical simulations indicate that Betelgeuse has a very young bow shock, hence the star may have only recently become a RSG. To test this possibility we calculated a stellar evolution model for a single star with properties consistent with Betelgeuse. We incorporated the resulting evolving stellar wind into 2D hydrodynamic simulations to model a runaway blue supergiant (BSG) undergoing the transition to a RSG near the end of its life. The collapsing BSG wind bubble induces a bow shock-shaped inner shell which at least superficially resembles Betelgeuses bow shock, and has a similar mass. Surrounding this is the larger-scale retreating bow shock generated by the now defunct BSG winds interaction with the ISM. We investigate whether this outer shell could explain the bar feature located (at least in projection) just in front of Betelgeuses bow shock.
At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass loss and space velocity of massive runaway stars affect the morphol ogy of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [OIII]. The Ha emission of the bow shocks around hot stars originates from near their contact discontinuity. The H$alpha$ emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically-thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.
The circumstellar medium around massive stars is strongly impacted by stellar winds, radiation, and explosions. We use numerical simulations of these interactions to constrain the current properties and evolutionary history of various stars by compar ison with observed circumstellar structures. Two- and three-dimensional simulations of bow shocks around red supergiant stars have shown that Betelgeuse has probably only recently evolved from a blue supergiant to a red supergiant, and hence its bow shock is very young and has not yet reached a steady state. We have also for the first time investigated the magnetohydrodynamics of the photoionised H II region around the nearby runaway O star Zeta Oph. Finally, we have calculated a grid of models of bow shocks around main sequence and evolved massive stars that has general application to many observed bow shocks, and which forms the basis of future work to model the explosions of these stars into their pre-shaped circumstellar medium.
Expanding nebulae are produced by mass loss from stars, especially during late stages of evolution. Multi-dimensional simulation of these nebulae requires high resolution near the star and permits resolution that decreases with distance from the star , ideally with adaptive timesteps. We report the implementation and testing of static mesh-refinement in the radiation-magnetohydrodynamics code PION, and document its performance for 2D and 3D calculations. The bow shock produced by a hot, magnetized, slowly rotating star as it moves through the magnetized ISM is simulated in 3D, highlighting differences compared with 2D calculations. Latitude-dependent, time-varying magnetized winds are modelled and compared with simulations of ring nebulae around blue supergiants from the literature. A 3D simulation of the expansion of a fast wind from a Wolf-Rayet star into the slow wind from a previous red supergiant phase of evolution is presented, with results compared with results in the literature and analytic theory. Finally the wind-wind collision from a binary star system is modelled with 3D MHD, and the results compared with previous 2D hydrodynamic calculations. A python library is provided for reading and plotting simulation snapshots, and the generation of synthetic infrared emission maps using torus is also demonstrated. It is shown that state-of-the-art 3D MHD simulations of wind-driven nebulae can be performed using PION with reasonable computational resources. The source code and user documentation is made available for the community under a BSD3 licence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا