ترغب بنشر مسار تعليمي؟ اضغط هنا

Trapping of interacting propelled colloidal particles in inhomogeneous media

87   0   0.0 ( 0 )
 نشر من قبل Martin Magiera
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A trapping mechanism for propelled colloidal particles based on an inhomogeneous drive is presented and studied by means of computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which shines through a shading mask and leads to an accumulation of the particles in the passive part. An equation for an accumulation parameter is derived using the effective inhomogeneous diffusion constant generated by the inhomogeneous drive. The impact of particle interaction on the trapping mechanism is studied, as well as the interplay between passivity-induced trapping and the emergent self-clustering of systems containing a high density of active particles. The combination of both effects makes the clusters more controllable for applications.



قيم البحث

اقرأ أيضاً

We study a system of self-propelled disks that perform run-and-tumble motion, where particles can adopt more than one internal state. One of those internal states can be transmitted to another particle if the particle carrying this state maintains ph ysical contact with another particle for a finite period of time. We refer to this process as a reaction process and to the different internal states as particle species making an analogy to chemical reactions. The studied system may fall into an absorbing phase, where due to the disappearance of one of the particle species no further reaction can occur or remain in an active phase where particles constantly react. Combining individual-based simulations and mean-field arguments, we study the dependence of the equilibrium densities of particle species with motility parameters, specifically the active speed $v_0$ and tumbling frequency $lambda$. We find that the equilibrium densities of particle species exhibit two very distinct, non-trivial scaling regimes with $v_0$ and $lambda$ depending on whether the system is in the so-called ballistic or diffusive regime. Our mean-field estimates lead to an effective renormalization of reaction rates that allow building the phase-diagram $v_0$--$lambda$ that separates the absorbing and active phase. We find an excellent agreement between numerical simulations and estimates. This study is a necessary step to an understanding of phase transitions into an absorbing state in active systems and sheds light on the spreading of information/signaling among moving elements.
Brownian transport of self-propelled overdamped microswimmers (like Janus particles) in a two-dimensional periodically compartmentalized channel is numerically investigated for different compartment geometries, boundary collisional dynamics, and part icle rotational diffusion. The resulting time-correlated active Brownian motion is subject to rectification in the presence of spatial asymmetry. We prove that ratcheting of Janus particles can be orders of magnitude stronger than for ordinary thermal potential ratchets and thus experimentally accessible. In particular, autonomous pumping of a large mixture of passive particles can be induced by just adding a small fraction of Janus particles.
The symmetry of the alignment mechanism in systems of polar self-propelled particles determines the possible macroscopic large-scale patterns that can emerge. Here we compare polar and apolar alignment. These systems share some common features like g iant number fluctuations in the ordered phase and self-segregation in the form of bands near the onset of orientational order. Despite these similarities, there are essential differences like the symmetry of the ordered phase and the stability of the bands.
Comptonization is the process in which photon spectrum changes due to multiple Compton scatterings in the electronic plasma. It plays an important role in the spectral formation of astrophysical X-ray and gamma-ray sources. There are several intrinsi c limitations for the analytical method in dealing with the Comptonization problem and Monte Carlo simulation is one of the few alternatives. We describe an efficient Monte Carlo method that can solve the Comptonization problem in a fully relativistic way. We expanded the method so that it is capable of simulating Comptonization in the media where electron density and temperature varies discontinuously from one region to the other and in the isothermal media where density varies continuously along photon paths. The algorithms are presented in detail to facilitate computer code implementation. We also present a few examples of its application to the astrophysical research.
Systems of self-propelled particles (SPP) interacting by a velocity alignment mechanism in the presence of noise exhibit a rich clustering dynamics. It can be argued that clusters are responsible for the distribution of (local) information in these s ystems. Here, we investigate the statistical properties of single clusters in SPP systems, like the asymmetric spreading of clusters with respect to their moving direction. In addition, we formulate a Smoluchowski-type kinetic model to describe the evolution of the cluster size distribution (CSD). This model predicts the emergence of steady-state CSDs in SPP systems. We test our theoretical predictions in simulations of SPP with nematic interactions and find that our simple kinetic model reproduces qualitatively the transition to aggregation observed in simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا