ﻻ يوجد ملخص باللغة العربية
We present the version 2.0 of the program GoSam, which is a public program package to compute one-loop corrections to multi-particle processes. The extended version of the Binoth-Les-Houches-Accord interface to Monte Carlo programs is also implemented. This allows a large flexibility regarding the combination of the code with various Monte Carlo programs to produce fully differential NLO results, including the possibility of parton showering and hadronisation. We describe the new features of the code and illustrate the wide range of applicability for multi-particle processes at NLO, both within and beyond the Standard Model.
In this talk, the program package GOSAM is presented, which can be used for the automated calculation of one-loop amplitudes for multi-particle processes. The integrands are generated in terms of Feynman diagrams and can be reduced by d-dimensional i
The program package GoSam is presented which aims at the automated calculation of one-loop amplitudes for multi-particle processes. The amplitudes are generated in terms of Feynman diagrams and can be reduced using either D-dimensional integrand-leve
We present the version 2.0 of the program package GoSam for the automated calculation of one-loop amplitudes. GoSam is devised to compute one-loop QCD and/or electroweak corrections to multi-particle processes within and beyond the Standard Model. Th
We present applications of the program GoSam for the automated calculation of one-loop amplitudes. Results for NLO QCD corrections to beyond the Standard Model processes as well as Higgs plus up to three-jet production in gluon fusion are shown. We also discuss some new features of the program.
Strategy and results for complete one-loop computations in the Minimal Supersymmetric Standard Model are reviewed, with applications to the calculation of SUSY mass spectra and SUSY-particle processes. Determination of renormalization constants and c