ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced Trellis Coded Multiple Access (ETCMA)

80   0   0.0 ( 0 )
 نشر من قبل Alberto Perotti
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an enhanced version of trellis coded multiple access (TCMA), an overloaded multiple access scheme that outperforms the original TCMA in terms of achieved spectral efficiency. Enhanced TCMA (ETCMA) performs simultaneous transmission of multiple data streams intended for users experiencing similar signal-to-noise ratios and can be employed both in the uplink and in the downlink of wireless systems, thus overcoming one of the main limitations of TCMA. Thanks to a new receiver algorithm, ETCMA is capable of delivering a significantly higher spectral efficiency. We show that ETCMA approaches the capacity of the Additive White Gaussian Noise channel for a wide range of signal-to-noise ratios.

قيم البحث

اقرأ أيضاً

Non-orthogonal multiple access (NOMA) is one of the key techniques to address the high spectral efficiency and massive connectivity requirements for the fifth generation (5G) wireless system. To efficiently realize NOMA, we propose a joint design fra mework combining the polar coding and the NOMA transmission, which deeply mines the generalized polarization effect among the users. In this polar coded NOMA (PC-NOMA) framework, the original NOMA channel is decomposed into multiple bit polarized channels by using a three-stage channel transform, that is, user$to$signal$to$bit partitions. Specifically, for the first-stage channel transform, we design two schemes, namely sequential user partition (SUP) and parallel user partition (PUP). For the SUP, a joint successive cancellation detecting and decoding scheme is developed, and a search algorithm is proposed to schedule the NOMA detecting order which improves the system performance by enhanced polarization among the user synthesized channels. The worst-goes-first idea is employed in the scheduling strategy, and its theoretic performance is analyzed by using the polarization principle. For the PUP, a corresponding parallel detecting scheme is exploited to reduce the latency. The block error ratio performances over the additive white Gaussian noise channel and the Rayleigh fading channel indicate that the proposed PC-NOMA obviously outperforms the state-of-the-art turbo coded NOMA scheme due to the advantages of joint design between the polar coding and NOMA.
This paper presents the first network-coded multiple access (NCMA) system prototype operated on high-order modulations up to 16-QAM. NCMA jointly exploits physical-layer network coding (PNC) and multiuser decoding (MUD) to boost throughput of multipa cket reception systems. Direct generalization of the existing NCMA decoding algorithm, originally designed for BPSK, to high-order modulations, will lead to huge performance degradation. The throughput degradation is caused by the relative phase offset between received signals from different nodes. To circumvent the phase offset problem, this paper investigates an NCMA system with multiple receive antennas at the access point (AP), referred to as MIMO-NCMA. We put forth a low-complexity symbol-level NCMA decoder that, together with MIMO, can substantially alleviate the performance degradation induced by relative phase offset. To demonstrate the feasibility and advantage of MIMO-NCMA for high-order modulations, we implemented our designs on software-defined radio. Our experimental results show that the throughput of QPSK MIMO-NCMA is double that of both BPSK NCMA and QPSK MUD at SNR=10dB. For higher SNRs at which 16-QAM can be supported, the throughput of MIMO-NCMA can be as high as 3.5 times that of BPSK NCMA. Overall, this paper provides an implementable framework for high-order modulated NCMA.
This letter considers two groups of source nodes. Each group transmits packets to its own designated destination node over single-hop links and via a cluster of relay nodes shared by both groups. In an effort to boost reliability without sacrificing throughput, a scheme is proposed, whereby packets at the relay nodes are combined using two methods; packets delivered by different groups are mixed using non-orthogonal multiple access principles, while packets originating from the same group are mixed using random linear network coding. An analytical framework that characterizes the performance of the proposed scheme is developed, compared to simulation results and benchmarked against a counterpart scheme that is based on orthogonal multiple access.
In this paper, code pairs based on trellis coded modulation are proposed over PSK signal sets for a two-user Gaussian multiple access channel. In order to provide unique decodability property to the receiver and to maximally enlarge the constellation constrained (CC) capacity region, a relative angle of rotation is introduced between the signal sets. Subsequently, the structure of the textit{sum alphabet} of two PSK signal sets is exploited to prove that Ungerboeck labelling on the trellis of each user maximizes the guaranteed minimum squared Euclidean distance, $d^{2}_{g, min}$ in the textit{sum trellis}. Hence, such a labelling scheme can be used systematically to construct trellis code pairs for a two-user GMAC to approach emph{any rate pair} within the capacity region.
79 - John Kieffer , Yu Liao 2010
Let G be a finite strongly connected aperiodic directed graph in which each edge carries a label from a finite alphabet A. Then G induces a trellis coded quantizer for encoding an alphabet A memoryless source. A source sequence of long finite length is encoded by finding a path in G of that length whose sequence of labels is closest in Hamming distance to the source sequence; finding the minimum distance path is a dynamic programming problem that is solved using the Viterbi algorithm. We show how a Markov chain can be used to obtain a closed form expression for the asymptotic expected Hamming distortion per sample that results as the number of encoded source samples increases without bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا