ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs coupling measurements and impact on the MSSM

173   0   0.0 ( 0 )
 نشر من قبل Beranger Dumont
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Beranger Dumont




اسأل ChatGPT حول البحث

Run I of the LHC has not revealed any sign of new physics beyond the Standard Model (BSM). However, the discovery of an SM-like Higgs boson with mass around 125 GeV opens up new possibilities for probing various BSM scenarios with enlarged Higgs sectors and/or new particles affecting the loop-induced processes or opening new decay modes. We will present how we derive constraints on new physics from the Higgs measurements performed by the ATLAS and CMS collaborations. The impact of these measurements will then be assessed in the context of the general phenomenological Minimal Supersymmetric Standard Model (MSSM) and in the MSSM with a light neutralino as a dark matter candidate.



قيم البحث

اقرأ أيضاً

We present the first calculation of the one-loop corrections to the triple Higgs coupling in the framework of a simplified 3+1 Dirac neutrino model, that is three light neutrinos plus one heavy neutrino embedded in the Standard Model (SM). The triple Higgs coupling is a key parameter of the scalar potential triggering the electroweak symmetry-breaking mechanism in the SM. The impact of the heavy neutrino can be as large as $+20%$ to $+30%$ for parameter points allowed by the current experimental constraints depending on the tightness of the perturbative bound. This can be probed at the high-luminosity LHC, at future electron-positron colliders and at the Future Circular Collider in hadron-hadron mode, an envisioned 100 TeV $pp$ machine. Our calculation, being done in the mass basis, can be extended to any model using the neutrino portal. In addition, the effects that we have calculated are expected to be enhanced if additional heavy fermions with large Yukawa couplings are included, as in low-scale seesaw mechanisms.
Precision measurements of the Higgs boson properties at the LHC provide relevant constraints on possible weak-scale extensions of the Standard Model (SM). In the context of the Minimal Supersymmetric Standard Model (MSSM) these constraints seem to su ggest that all the additional, non-SM-like Higgs bosons should be heavy, with masses larger than about 400 GeV. This article shows that such results do not hold when the theory approaches the conditions for alignment independent of decoupling, where the lightest CP-even Higgs boson has SM-like tree-level couplings to fermions and gauge bosons, independently of the non-standard Higgs boson masses. The combination of current bounds from direct Higgs boson searches at the LHC, along with the alignment conditions, have a significant impact on the allowed MSSM parameter space yielding light additional Higgs bosons. In particular, after ensuring the correct mass for the lightest CP-even Higgs boson, we find that precision measurements and direct searches are complementary, and may soon be able to probe the region of non-SM-like Higgs boson with masses below the top quark pair mass threshold of 350 GeV and low to moderate values of $tanbeta$.
99 - E. Boos 2004
We analyze the prospects for detecting the three neutral Higgs bosons of the Minimal Supersymmetric extension of the Standard Model in the intense-coupling regime at e+e- colliders. Due to the small mass differences between the Higgs states in this r egime and their relative large total decay widths, the discrimination between the particles is challenging at the LHC and in some cases even impossible. We propose to use the missing mass technique in the Higgs-strahlung process in e+e- collisions to distinguish between the two CP-even Higgs eigenstates h and H, relying on their b b-bar decay in the b,b-bar,l+,l- event sample. Ah and AH associated production is then studied in the 4b-jet event sample to probe the CP-odd A boson. At collider energies sqrt(s) = 300 GeV and an integrated luminosity of 500 fb-1, accuracies in the mass measurement of the CP-even Higgs bosons are expected to range from 100 to 300 MeV, while for the CP-odd A boson, accuracies of less than 500 MeV can be obtained.
We set constraints on the trilinear Higgs boson self-coupling, $lambda_3$, by combining the information coming from the $W$ mass and leptonic effective Weinberg angle, electroweak precision observables, with the single Higgs boson analyses targeting the $gamma gamma,, ZZ^*,, WW^*, ,tau^+ tau^-$ and $bar{b} b$ decay channels and the double Higgs boson analyses in the $bbar{b}bbar{b}, , bbar{b}b tau^+ tau^-$ and $bbar{b}b gamma gamma$ decay channels, performed by the ATLAS collaboration. With the assumption that the new physics affects only the Higgs potential, values outside the interval $ -1.8, lambda_3^{rm SM} < lambda_3 < 9.2 , lambda_3^{rm SM}$ are excluded at $95%$ confidence level. With respect to similar analyses that do not include the information coming from the electroweak precision observables our analysis shows a stronger constraint on both positive and negative values of $lambda_3$.
Predictions for the Higgs masses are a distinctive feature of supersymmetric extensions of the Standard Model, where they play a crucial role in constraining the parameter space. The discovery of a Higgs boson and the remarkably precise measurement o f its mass at the LHC have spurred new efforts aimed at improving the accuracy of the theoretical predictions for the Higgs masses in supersymmetric models. The Precision SUSY Higgs Mass Calculation Initiative (KUTS) was launched in 2014 to provide a forum for discussions between the different groups involved in these efforts. This report aims to present a comprehensive overview of the current status of Higgs-mass calculations in supersymmetric models, to document the many advances that were achieved in recent years and were discussed during the KUTS meetings, and to outline the prospects for future improvements in these calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا