ﻻ يوجد ملخص باللغة العربية
Run I of the LHC has not revealed any sign of new physics beyond the Standard Model (BSM). However, the discovery of an SM-like Higgs boson with mass around 125 GeV opens up new possibilities for probing various BSM scenarios with enlarged Higgs sectors and/or new particles affecting the loop-induced processes or opening new decay modes. We will present how we derive constraints on new physics from the Higgs measurements performed by the ATLAS and CMS collaborations. The impact of these measurements will then be assessed in the context of the general phenomenological Minimal Supersymmetric Standard Model (MSSM) and in the MSSM with a light neutralino as a dark matter candidate.
We present the first calculation of the one-loop corrections to the triple Higgs coupling in the framework of a simplified 3+1 Dirac neutrino model, that is three light neutrinos plus one heavy neutrino embedded in the Standard Model (SM). The triple
Precision measurements of the Higgs boson properties at the LHC provide relevant constraints on possible weak-scale extensions of the Standard Model (SM). In the context of the Minimal Supersymmetric Standard Model (MSSM) these constraints seem to su
We analyze the prospects for detecting the three neutral Higgs bosons of the Minimal Supersymmetric extension of the Standard Model in the intense-coupling regime at e+e- colliders. Due to the small mass differences between the Higgs states in this r
We set constraints on the trilinear Higgs boson self-coupling, $lambda_3$, by combining the information coming from the $W$ mass and leptonic effective Weinberg angle, electroweak precision observables, with the single Higgs boson analyses targeting
Predictions for the Higgs masses are a distinctive feature of supersymmetric extensions of the Standard Model, where they play a crucial role in constraining the parameter space. The discovery of a Higgs boson and the remarkably precise measurement o