ﻻ يوجد ملخص باللغة العربية
We use holography to study the ground state of a system with interacting bosonic and fermionic degrees of freedom at finite density. The gravitational model consists of Einstein-Maxwell gravity coupled to a perfect fluid of charged fermions and to a charged scalar field which interact through a current-current interaction. When the scalar field is non-trivial, in addition to compact electron stars, the screening of the fermion electric charge by the scalar condensate allows the formation of solutions where the fermion fluid is made of antiparticles, as well as solutions with coexisting, separated regions of particle-like and antiparticle-like fermion fluids. We show that, when the latter solutions exist, they are thermodynamically favored. By computing the two-point Green function of the boundary fermionic operator we show that, in addition to the charged scalar condensate, the dual field theory state exhibits electron-like and/or hole-like Fermi surfaces. Compared to fluid-only solutions, the presence of the scalar condensate destroys the Fermi surfaces with lowest Fermi momenta. We interpret this as a signal of the onset of superconductivity.
We present an infinite class of 2+1 dimensional field theories which, after coupling to semi-holographic fermions, exhibit strange metallic behavior in a suitable large $N$ limit. These theories describe lattices of hypermultiplet defects interacting
In this paper, we analyze a proposed gravity dual to a $SU(N)$ Bose-Hubbard model, as well as construct a holographic dual of a $SU(N)$ Fermi-Hubbard model from D-branes in string theory. In both cases, the $SU(N)$ is dynamical, i.e. the hopping degr
In this paper, we study a holographic dual of a confined fermi liquid state by putting a charged fluid of fermions in the AdS soliton geometry. This can be regarded as a confined analogue of electron stars. Depending on the parameters such as the mas
Semi-holographic models of non-Fermi liquids have been shown to have generically stable generalised quasi-particles on the Fermi surface. Although these excitations are broad and exhibit particle-hole asymmetry, they were argued to be stable from int
We study the fermionic spectral density in a strongly correlated quantum system described by a gravity dual. In the presence of periodically modulated chemical potential, which models the effect of the ionic lattice, we explore the shapes of the corr