ﻻ يوجد ملخص باللغة العربية
We investigate a vertically-stacked hybrid photodiode consisting of a thin n-type molybdenum disulfide (MoS$_{2}$) layer transferred onto p-type silicon. The fabrication is scalable as the MoS$_{2}$ is grown by a controlled and tunable vapor phase sulfurization process. The obtained large-scale p-n heterojunction diodes exhibit notable photoconductivity which can be tuned by modifying the thickness of the MoS$_{2}$ layer. The diodes have a broad spectral response due to direct and indirect band transitions of the nanoscale MoS$_{2}$. Further, we observe a blue-shift of the spectral response into the visible range. The results are a significant step towards scalable fabrication of vertical devices from two-dimensional materials and constitute a new paradigm for materials engineering.
Layered two-dimensional (2D) materials display great potential for a range of applications, particularly in electronics. We report the large-scale synthesis of thin films of platinum diselenide (PtSe2), a thus far scarcely investigated transition met
We present a systematic study of the morphology of homoepitaxial InP films grown by metalorganic vapor-phase epitaxy which are imaged with ex situ atomic force microscopy. These films show a dramatic range of different surface morphologies as a funct
The direct growth of semiconductors over metals by molecular beam epitaxy is a difficult task due to the large differences in crystallization energy between these types of materials. This aspect is problematic in the context of spintronics, where coh
Single- and multi-walled molybdenum disulfide (MoS$_2$) nanotubes have been coaxially grown on small diameter boron nitride nanotubes (BNNTs) which were synthesized from heteronanotubes by removing single-walled carbon nanotubes (SWCNTs), and systema
Combining MoS$_2$ monolayers to form multilayers allows to access new functionalities. In this work, we examine the correlation between the stacking order and the interlayer coupling of valence states in MoS$_2$ homobilayer samples grown by chemical