ﻻ يوجد ملخص باللغة العربية
Galactic black hole candidates GRS 1915+105 and IGR J17091-3624 have many similarities in their light curves and spectral properties. However, very little is known about the orbital elements of their companions. In case the orbits are eccentric, tidal forces by the black hole on the companion can cause modulations of accretion rates in orbital time scale. We look for these modulations in the light curves of these two objects and find that their periodicities are around 28.3 d (29.0 d) and 32.2 d respectively. Eccentricities are at the most 0.071 and 0.46 respectively. We conclude that both these objects have long orbital periods and are eccentric. This could be a reason why light curves have several similar variability class transitions as reported in the literature.
We report on the long-term monitoring campaign of the black hole candidate IGR J17091-3624 performed with INTEGRAL and Swift during the peculiar outburst started on January 2011. We have studied the two month spectral evolution of the source in detai
We present here the main characteristics of the BHC IGR J17091-3624 outbursts occurred several times since 1994. Since 2003, the source has been extensively observed by INTEGRAL and Swift. In particular, we report results on the last 2011 outburst th
We performed an analysis of all RXTE observations of the Low Mass X-ray Binary and Black Hole Candidate IGR J17091-3624 during the 2011-2013 outburst of the source. By creating lightcurves, hardness-intensity diagrams and power density spectra of eac
IGR J17091--3624 is a transient galactic black hole which has a distinct quasi-periodic variability known as `heartbeat, similar to the one observed in GRS 1915+105. In this paper, we report the results of $sim 125$ ks textit{AstroSat} observations o
We explore the nonlinear properties of IGR J17091-3624 in the line of the underlying behaviour for GRS 1915+105, following correlation integral method. We find that while the latter is known to reveal the combination of fractal (or even chaotic) and