ترغب بنشر مسار تعليمي؟ اضغط هنا

First Detection of the White-Dwarf Cooling Sequence of the Galactic Bulge

127   0   0.0 ( 0 )
 نشر من قبل Annalisa Calamida Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (3x3), together with three more Advanced Camera for Surveys and eight Wide Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for two years, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ~0.1 mas/yr (~4 km/s) at F606W~25.5 mag, and better than ~0.5 mas/yr (20 km/s) at F606W~28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD - main sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P < 1 d) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.



قيم البحث

اقرأ أيضاً

91 - Brad Hansen 2004
We investigate in detail the white dwarf cooling sequence of the globular cluster Messier 4. In particular we study the influence of various systematic uncertainties, both observational and theoretical, on the determination of the cluster age from th e white dwarf cooling sequence. These include uncertainties in the distance to the cluster and the extinction along the line of sight, as well as the white dwarf mass, envelope and core compositions and the white dwarf --main sequence mass relation. We find that fitting to the full two-dimensional colour-magnitude diagram offers a more robust method for age determination than the traditional method of fitting the one-dimensional white dwarf luminosity function. After taking into account the various uncertainties, we find a best fit age of 12.1 Gyr, with a 95% lower limit of 10.3 Gyr. We also perform fits using two other sets of cooling models from the literature. The models of Chabrier et al (2000) yield an encouragingly similar result, although the models of Salaris et al (2000) do not provide as good a fit. Our results support our previous determination of a delay between the formation of the Galactic halo and the onset of star formation in the Galactic disk.
118 - L. R. Bedin 2005
In the old, populous, and metal-rich open cluster NGC 6791 we have used deep HST/ACS images to track the white dwarf cooling sequence down to m_F606W~28.5. The white dwarf luminosity function shows a well defined peak at m_F606W~27.4, and a bending t o the blue in the color--magnitude diagram. If this peak corresponds to the end of the white dwarf cooling sequence the comparison with theoretical isochrones provides a cluster age estimate of ~2.4 Gyr, in sharp contrast with the age of 8--9 Gyr inferred from the main-sequence turn-off. If the end is at fainter magnitudes, the peak at m_F606W~27.4 is even more enigmatic. We discuss possible causes, none of them very convincing.
210 - L. R. Bedin 2009
We use 14 orbits of ACS observations to reach the end of the white-dwarf cooling sequence in the globular cluster M4. Our photometry and completeness tests show that the end is located at magnitude m_F606W = 28.5+/-0.1, which implies an age of 11.6+/ -0.6 Gyr (internal errors only). This is consistent with the age from fits to the main sequence turn-off (12.0+/-1.4 Gyr).
88 - L. R. Bedin 2015
We use Hubble Space Telescope (HST) to reach the end of the white dwarf (WD) cooling sequence (CS) in the solar-metallicity open cluster NGC 6819. Our photometry and completeness tests show a sharp drop in the number of WDs along the CS at magnitudes fainter than mF606W = 26.050+/- 0.075. This implies an age of 2.25+/-0.20 Gyr, consistent with the age of 2.25+/-0.30 Gyr obtained from fits to the main-sequence turn-off. The use of different WD cooling models and initial-final-mass relations have a minor impact the WD age estimate, at the level of ~0.1 Gyr. As an important by-product of this investigation we also release, in electronic format, both the catalogue of all the detected sources and the atlases of the region (in two filters). Indeed, this patch of sky studied by HST (of size ~70 arcmin sq.) is entirely within the main Kepler-mission field, so the high-resolution images and deep catalogues will be particularly useful.
159 - L. R. Bedin 2008
We present new observations of the white dwarf sequence of the old open cluster NGC 6791. The brighter peak previously observed in the white dwarf luminosity function (WDLF) is now better delineated, and the second, fainter peak that we suggested ear lier is now confirmed. A careful study suggests that we have reached the end of the white dwarf sequence. The WDs that create the two peaks in the WDLF show a significant turn to the blue in the color-magnitude diagram. The discrepancy between the age from the WDs and that from the main sequence turnoff remains, and we have an additional puzzle in the second peak in the WDLF. Canonical WD models seem to fail --at least at ~25%-level-- in reproducing the age of clusters of this metallicity. We discuss briefly possible ways of arriving at a theoretical understanding of the WDLF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا