ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram of inhomogeneous percolation with a defect plane

54   0   0.0 ( 0 )
 نشر من قبل Esaias J Janse van Rensburg
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Let ${mathbb{L}}$ be the $d$-dimensional hypercubic lattice and let ${mathbb{L}}_0$ be an $s$-dimensional sublattice, with $2 leq s < d$. We consider a model of inhomogeneous bond percolation on ${mathbb{L}}$ at densities $p$ and $sigma$, in which edges in ${mathbb{L}}setminus {mathbb{L}}_0$ are open with probability $p$, and edges in ${mathbb{L}}_0$ open with probability $sigma$. We generalizee several classical results of (homogeneous) bond percolation to this inhomogeneous model. The phase diagram of the model is presented, and it is shown that there is a subcritical regime for $sigma< sigma^*(p)$ and $p<p_c(d)$ (where $p_c(d)$ is the critical probability for homogeneous percolation in ${mathbb{L}}$), a bulk supercritical regime for $p>p_c(d)$, and a surface supercritical regime for $p<p_c(d)$ and $sigma>sigma^*(p)$. We show that $sigma^*(p)$ is a strictly decreasing function for $pin[0,p_c(d)]$, with a jump discontinuity at $p_c(d)$. We extend the Aizenman-Barsky differential inequalities for homogeneous percolation to the inhomogeneous model and use them to prove that the susceptibility is finite inside the subcritical phase. We prove that the cluster size distribution decays exponentially in the subcritical phase, and sub-exponentially in the supercritical phases. For a model of lattice animals with a defect plane, the free energy is related to functions of the inhomogeneous percolation model, and we show how the percolation transition implies a non-analyticity in the free energy of the animal model. Finally, we present simulation estimates of the critical curve $sigma^*(p)$.


قيم البحث

اقرأ أيضاً

76 - Chusei Kiumi , Kei Saito 2020
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-de fect and two-phase QWs, which have been intensively researched. Localization is one of the most characteristic properties of QWs, and various types of two-phase QWs with one defect exhibit localization. Moreover, the existence of eigenvalues is deeply related to localization. In this paper, we obtain a necessary and sufficient condition for the existence of eigenvalues. Our analytical methods are mainly based on the transfer matrix, a useful tool to generate the generalized eigenfunctions. Furthermore, we explicitly derive eigenvalues for some classes of two-phase QWs with one defect, and illustrate the range of eigenvalues on unit circles with figures. Our results include some results in previous studies, e.g. Endo et al. (2020).
This paper studies the spectrum of a multi-dimensional split-step quantum walk with a defect that cannot be analysed in the previous papers. To this end, we have developed a new technique which allow us to use a spectral mapping theorem for the one-d efect model. We also derive the time-averaged limit measure for one-dimensional case as an application of the spectral analysis.
Let $ mathbb{L}^{d} = ( mathbb{Z}^{d},mathbb{E}^{d} ) $ be the $ d $-dimensional hypercubic lattice. We consider a model of inhomogeneous Bernoulli percolation on $ mathbb{L}^{d} $ in which every edge inside the $ s $-dimensional hyperplane $ mathbb{ Z}^{s} times { 0 }^{d-s} $, $ 2 leq s < d $, is open with probability $ q $ and every other edge is open with probability $ p $. We prove the uniqueness of the infinite cluster in the supercritical regime whenever $ p eq p_{c}(d) $, where $ p_{c}(d) $ denotes the threshold for homogeneous percolation, and that the critical point $ (p,q_{c}(p)) $ can be approximated on the phase space by the critical points of slabs, for any $ p < p_{c}(d) $.
The motion of a particle in the field of dispiration (due to a wedge disclination and a screw dislocation) is studied by path integration. By gauging $SO(2) otimes T(1)$, first, we derive the metric, curvature, and torsion of the medium of dispiratio n. Then we carry out explicitly path integration for the propagator of a particle moving in the non-Euclidean medium under the influence of a scalar potential and a vector potential. We obtain also the winding number representation of the propagator by taking the non-trivial topological structure of the medium into account. We extract the energy spectrum and the eigenfunctions from the propagator. Finally we make some remarks for special cases. Particularly, paying attention to the difference between the result of the path integration and the solution of Schrodingers equation in the case of disclination, we suggest that Schrodinger equation may have to be modified by a curvature term.
Random plane wave is conjectured to be a universal model for high-energy eigenfunctions of the Laplace operator on generic compact Riemanian manifolds. This is known to be true on average. In the present paper we discuss one of important geometric ob servable: critical points. We first compute one-point function for the critical point process, in particular we compute the expected number of critical points inside any open set. After that we compute the short-range asymptotic behaviour of the two-point function. This gives an unexpected result that the second factorial moment of the number of critical points in a small disc scales as the fourth power of the radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا