ترغب بنشر مسار تعليمي؟ اضغط هنا

The information content of galaxy surveys

432   0   0.0 ( 0 )
 نشر من قبل Julien Carron
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Julien Carron




اسأل ChatGPT حول البحث

A large fraction of this thesis is dedicated to the study of the information content of random fields with heavy tails, in particular the lognormal field, a model for the matter density fluctuation field. It is well known that in the nonlinear regime of structure formation, the matter fluctuation field develops such large tails. It has also been suggested that fields with large tails are not necessarily well described by the hierarchy of $N$-point functions. In this thesis, we are able to make this last statement precise and with the help of the lognormal model to quantify precisely its implications for inference on cosmological parameters : we find as our main result that only a tiny fraction of the total Fisher information of the field is still contained in the hierarchy of $N$-point moments in the nonlinear regime, rendering parameter inference from such moments very inefficient. We show that the hierarchy fails to capture the information that is contained in the underdense regions, which at the same time are found to be the most rich in information. We find further our results to be very consistent with numerical analysis using $N$-body simulations. We also discuss these issues with the help of explicit families of fields with the same hierarchy of $N$-point moments defined in this work. A similar analysis is then applied to the convergence field, the weighted projection of the matter density fluctuation field along the line of sight, with similar conclusions. We also show how simple mappings can correct for this inadequacy, consistently with previous findings in the literature (Abridged) .



قيم البحث

اقرأ أيضاً

We use analytic computations to predict the power spectrum as well as the bispectrum of Cosmic Infrared Background (CIB) anisotropies. Our approach is based on the halo model and takes into account the mean luminosity-mass relation. The model is used to forecast the possibility to simultaneously constrain cosmological, CIB and halo occupation distribution (HOD) parameters in the presence of foregrounds. For the analysis we use wavelengths in eight frequency channels between 200 and 900$;mathrm{GHz}$ with survey specifications given by Planck and LiteBird. We explore the sensitivity to the model parameters up to multipoles of $ell =1000$ using auto- and cross-correlations between the different frequency bands. With this setting, cosmological, HOD and CIB parameters can be constrained to a few percent. Galactic dust is modeled by a power law and the shot noise contribution as a frequency dependent amplitude which are marginalized over. We find that dust residuals in the CIB maps only marginally influence constraints on standard cosmological parameters. Furthermore, the bispectrum yields tighter constraints (by a factor four in $1sigma$ errors) on almost all model parameters while the degeneracy directions are very similar to the ones of the power spectrum. The increase in sensitivity is most pronounced for the sum of the neutrino masses. Due to the similarity of degeneracies a combination of both analysis is not needed for most parameters. This, however, might be due to the simplified bias description generally adopted in such halo model approaches.
Galaxy groups host the majority of matter and more than half of all the galaxies in the Universe. Their hot ($10^7$ K), X-ray emitting intra-group medium (IGrM) reveals emission lines typical of many elements synthesized by stars and supernovae. Beca use their gravitational potentials are shallower than those of rich galaxy clusters, groups are ideal targets for studying, through X-ray observations, feedback effects, which leave important marks on their gas and metal contents. Here, we review the history and present status of the chemical abundances in the IGrM probed by X-ray spectroscopy. We discuss the limitations of our current knowledge, in particular due to uncertainties in the modeling of the Fe-L shell by plasma codes, and coverage of the volume beyond the central region. We further summarize the constraints on the abundance pattern at the group mass scale and the insight it provides to the history of chemical enrichment. Parallel to the observational efforts, we review the progress made by both cosmological hydrodynamical simulations and controlled high-resolution 3D simulations to reproduce the radial distribution of metals in the IGrM, the dependence on system mass from group to cluster scales, and the role of AGN and SN feedback in producing the observed phenomenology. Finally, we highlight future prospects in this field, where progress will be driven both by a much richer sample of X-ray emitting groups identified with eROSITA, and by a revolution in the study of X-ray spectra expected from micro-calorimeters onboard XRISM and ATHENA.
We develop a novel method to extract key cosmological information, which is primarily carried by the baryon acoustic oscillations (BAO) and redshift space distortions (RSD), from spectroscopic galaxy surveys, based on a joint principal component anal ysis (PCA) and Karhunen-Lo`eve (KL) data compression scheme. Comparing to the traditional methods using the multipoles or wedges of the galaxy correlation functions, we find that our method is able to extract the key information more efficiently, with a better control of the potential systematics, which manifests it as a powerful tool for clustering analysis for ongoing and forthcoming galaxy surveys.
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in t he absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate hostless SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.
The tightest and most robust cosmological results of the next decade will be achieved by bringing together multiple surveys of the Universe. This endeavor has to happen across multiple layers of the data processing and analysis, e.g., enhancements ar e expected from combining Euclid, Rubin, and Roman (as well as other surveys) not only at the level of joint processing and catalog combination, but also during the post-catalog parts of the analysis such as the cosmological inference process. While every experiment builds their own analysis and inference framework and creates their own set of simulations, cross-survey work that homogenizes these efforts, exchanges information from numerical simulations, and coordinates details in the modeling of astrophysical and observational systematics of the corresponding datasets is crucial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا