ﻻ يوجد ملخص باللغة العربية
We aim to demonstrate an efficient method to calculate the AC losses in multi-pancake coils. This method extends Yuan front-track model into several pancake application and investigates the detail parameters in comparison with established H-formula implemented in COMSOL and minimization of energy method. We use the front-track idea to analyze stacked pancakes assuming the current fronts are straight lines and using the critical state model. The current distribution is solved by two means: minimization of the perpendicular magnetic field in the subcritical region, as Clem and Yuan proposed; minimization of total magnetic energy. We also investigate the impacts of applied current and different gaps between multi pancakes on loss calculation. Our model provides a fast calculation method of AC loss in stacked (Re)BCO pancakes and is useful to HTS applications in high field magnets, energy storage devices and electric machines.
Rare earth barium copper oxide (REBCO) coated conductor has emerged as one of the high Tc superconductors suitable for future ultrahigh field superconducting magnet applications. In the design and fabrication of such ultrahigh field REBCO magnets, it
High temperature superconducting coated conductor (CC) could be practically applied in electric equipment due to its favorable mechanical properties and the critical current performance of YBCO superconducting layer. It is well known that CC could be
The hysteretic ac loss of a current-carrying conductor in which multiple superconducting strips are polygonally arranged around a cylindrical former is theoretically investigated as a model of superconducting cables. Using the critical state model, w
We report on microwave measurements on DyBa$_2$Cu$_3$O$_{7-rmdelta}$ monodomains grown by the top-seeded melt-textured technique. We measured the field increase of the surface resistance $R_{rm s}(H)$ in the a-b plane at 48.3 GHz. Measurements were p
A simple analytical expression is presented for hysteretic ac loss $Q$ of a superconducting strip simultaneously exposed to an ac transport current $I_0cosomega t$ and a phase-different ac magnetic field $H_0cos(omega t+theta_0)$. On the basis of Bea