ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering in the ultrastrong regime: nonlinear optics with one photon

217   0   0.0 ( 0 )
 نشر من قبل David Zueco
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The scattering of a flying photon by a two-level system ultrastrongly coupled to a one-dimensional photonic waveguide is studied numerically. The photonic medium is modeled as an array of coupled cavities and the whole system is analyzed beyond the rotating wave approximation using Matrix Product States. It is found that the scattering is strongly influenced by the single- and multi-photon dressed bound states present in the system. In the ultrastrong coupling regime a new channel for inelastic scattering appears, where an incident photon deposits energy into the qubit, exciting a photon-bound state, and escaping with a lower frequency. This single-photon nonlinear frequency conversion process can reach up to 50% efficiency. Other remarkable features in the scattering induced by counter-rotating terms are a blueshift of the reflection resonance and a Fano resonance due to long-lived excited states



قيم البحث

اقرأ أيضاً

55 - K.J. Resch , J.S. Lundeen , 2001
We demonstrate suppression and enhancement of spontaneous parametric down- conversion via quantum interference with two weak fields from a local oscillator (LO). Pairs of LO photons are observed to upconvert with high efficiency for appropriate phase settings, exhibiting an effective nonlinearity enhanced by at least 10 orders of magnitude. This constitutes a two-photon switch, and promises to be useful for a variety of nonlinear optical effects at the quantum level.
340 - T. Jaako , J. J. Garcia-Ripoll , 2019
We study a circuit QED setup where multiple superconducting qubits are ultrastrongly coupled to a single radio-frequency resonator. In this extreme parameter regime of cavity QED the dynamics of the electromagnetic mode is very slow compared to all o ther relevant timescales and can be described as an effective particle moving in an adiabatic energy landscape defined by the qubits. The focus of this work is placed on settings with two or multiple qubits, where different types of symmetry-breaking transitions in the ground- and excited-state potentials can occur. Specifically, we show how the change in the level structure and the wave packet dynamics associated with these transition points can be probed via conventional excitation spectra and Ramsey measurements performed at GHz frequencies. More generally, this analysis demonstrates that state-of-the-art circuit QED systems can be used to access a whole range of particle-like quantum mechanical phenomena beyond the usual paradigm of coupled qubits and oscillators.
We explore photon coincidence counting statistics in the ultrastrong-coupling regime where the atom-cavity coupling rate becomes comparable to the cavity resonance frequency. In this regime usual normal order correlation functions fail to describe th e output photon statistics. By expressing the electric-field operator in the cavity-emitter dressed basis we are able to propose correlation functions that are valid for arbitrary degrees of light-matter interaction. Our results show that the standard photon blockade scenario is significantly modified for ultrastrong coupling. We observe parametric processes even for two-level emitters and temporal oscillations of intensity correlation functions at a frequency given by the ultrastrong photon emitter coupling. These effects can be traced back to the presence of two-photon cascade decays induced by counter-rotating interaction terms.
The interaction between an atom and the electromagnetic field inside a cavity has played a crucial role in the historical development of our understanding of light-matter interaction and is a central part of various quantum technologies, such as lase rs and many quantum computing architectures. The emergence of superconducting qubits has allowed the realization of strong and ultrastrong coupling between artificial atoms and cavities. If the coupling strength $g$ becomes as large as the atomic and cavity frequencies ($Delta$ and $omega_{rm o}$ respectively), the energy eigenstates including the ground state are predicted to be highly entangled. This qualitatively new regime can be called the deep strong-coupling regime, and there has been an ongoing debate over whether it is fundamentally possible to realize this regime in realistic physical systems. By inductively coupling a flux qubit and an LC oscillator via Josephson junctions, we have realized circuits with $g/omega_{rm o}$ ranging from 0.72 to 1.34 and $g/Deltagg 1$. Using spectroscopy measurements, we have observed unconventional transition spectra, with patterns resembling masquerade masks, that are characteristic of this new regime. Our results provide a basis for ground-state-based entangled-pair generation and open a new direction of research on strongly correlated light-matter states in circuit-quantum electrodynamics.
We present an experimentally feasible scheme to implement holonomic quantum computation in the ultrastrong-coupling regime of light-matter interaction. The large anharmonicity and the Z2 symmetry of the quantum Rabi model allow us to build an effecti ve three-level {Lambda}-structured artificial atom for quantum computation. The proposed physical implementation includes two gradiometric flux qubits and two microwave resonators where single-qubit gates are realized by a two-tone driving on one physical qubit, and a two-qubit gate is achieved with a time-dependent coupling between the field quadratures of both resonators. Our work paves the way for scalable holonomic quantum computation in ultrastrongly coupled systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا