ترغب بنشر مسار تعليمي؟ اضغط هنا

A systematic study of finite field dependent BRST-BV transformations in $Sp(2)$ extended field-antifield formalism

112   0   0.0 ( 0 )
 نشر من قبل Peter M. Lavrov
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the framework of $Sp(2)$ extended Lagrangian field-antifield BV formalism we study systematically the role of finite field-dependent BRST-BV transformations. We have proved that the Jacobian of a finite BRST-BV transformation is capable of generating arbitrary finite change of the gauge-fixing function in the path integral.



قيم البحث

اقرأ أيضاً

Finite BRST-BV transformations are studied systematically within the W-X formulation of the standard and the Sp(2)-extended field-antifield formalism. The finite BRST-BV transformations are introduced by formulating a new version of the Lie equations . The corresponding finite change of the gauge-fixing master action X and the corresponding Ward identity are derived.
We introduce external sources J_A directly into the quantum master action W of the field-antifield formalism instead of the effective action. The external sources J_A lead to a set of BRST-invariant functions W^A that are in antisymplectic involution . As a byproduct, we encounter quasi--groups with open gauge algebras.
We introduce classical and quantum antifields in the reparametrization-invariant effective action, and derive a deformed classical master equation.
It is proven that the nilpotent $Delta$-operator in the field-antifield formalism can be constructed in terms of an antisymplectic structure only.
We consider the problem of covariant gauge-fixing in the most general setting of the field-antifield formalism, where the action W and the gauge-fixing part X enter symmetrically and both satisfy the Quantum Master Equation. Analogous to the gauge-ge nerating algebra of the action W, we analyze the possibility of having a reducible gauge-fixing algebra of X. We treat a reducible gauge-fixing algebra of the so-called first-stage in full detail and generalize to arbitrary stages. The associated square root measure contributions are worked out from first principles, with or without the presence of antisymplectic second-class constraints. Finally, we consider an W-X alternating multi-level generalization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا