ﻻ يوجد ملخص باللغة العربية
This work discusses theoretically the behavior of a microwave cavity and a Cooper pair beam splitter (CPS) coupled non-resonantly. The cavity frequency pull is modified when the CPS is resonant with a microwave excitation. This provides a direct way to probe the coherence of the Cooper pair splitting process. More precisely, the cavity frequency pull displays an anticrossing whose specificities can be attributed unambiguously to coherent Cooper pair injection. This work illustrates that microwave cavities represent a powerful tool to investigate current transport in complex nanocircuits.
We investigate the nonlocal thermoelectric transport in a Cooper-pair splitter based on a double-quantum-dot-superconductor three-terminal hybrid structure. We find that the nonlocal coupling between the superconductor and the quantum dots gives rise
This article discusses how to demonstrate the entanglement of the split Cooper pairs produced in a double-quantum-dot based Cooper pair beam splitter (CPS), by performing the microwave spectroscopy of the CPS. More precisely, one can study the DC cur
We measure an aluminum superconducting double quantum dot and find that its electrical impedance, specifically its quantum capacitance, depends on whether or not it contains a single broken Cooper pair. In this way we are able to observe, in real tim
Thermoelectric effect is exploited to optimize the Cooper pair splitting efficiency in a Y-shaped junction, which consists of two normal leads coupled to an $s$-wave superconductor via double noninteracting quantum dots. Here, utilizing temperature d
We consider ballistic SQUIDs with spin filtering inside half-metallic ferromagnetic arms. A singlet Cooper pair cannot pass through an arm in this case, so the Josephson current is entirely due to the Cooper pair splitting, with two electrons going t