ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is to study the problem of generalizing the Belavkin-Kalman filter to the case where the classical measurement signal is replaced by a fully quantum non-commutative output signal. We formulate a least mean squares estimation problem that involves a non-commutative system as the filter processing the non-commutative output signal. We solve this estimation problem within the framework of non-commutative probability. Also, we find the necessary and sufficient conditions which make these non-commutative estimators physically realizable. These conditions are restrictive in practice.
We continue the study of the free energy of quantum lattice spin systems where to the local Hamiltonian $H$ an arbitrary mean field term is added, a polynomial function of the arithmetic mean of some local observables $X$ and $Y$ that do not necessar
We derive mean-field equations for a general class of ferromagnetic spin systems with an explicit error bound in finite volumes. The proof is based on a link between the mean-field equation and the free convolution formalism of random matrix theory,
In the first part of the paper, we classify linear integrable (multi-dimensionally consistent) quad-equations on bipartite isoradial quad-graphs in $mathbb C$, enjoying natural symmetries and the property that the restriction of their solutions to th
This work is concerned with the minimization of quantum entropies under local constraints of density, current, and energy. The problem arises in the work of Degond and Ringhofer about the derivation of quantum hydrodynamical models from first princip
A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetr