ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-short Period Binaries from the Catalina Surveys

146   0   0.0 ( 0 )
 نشر من قبل Andrew Drake
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, SDSS and GALEX multi-colour photometry, we identify two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M-dwarf+M-dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool-white dwarf+M-dwarf binaries. Only a few such systems are currently known. Unlike warmer white dwarf systems, their UV flux and their optical colours and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically-selected ultra-short period contact binary candidates, and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.



قيم البحث

اقرأ أيضاً

56 - Mark Cropper 2003
We review the current observational status of the ROSAT sources RX J1914.4+2456 and RX J0806.3+1527, and the evidence that these are ultra-short period (<10min) binary systems. We argue that an Intermediate Polar interpretation can be ruled out, that they are indeed compact binaries with a degenerate secondary, and that the period seen in the X-ray and optical is the orbital period. A white dwarf primary is preferred, but a neutron star cannot be excluded. We examine the capability of the three current double-degenerate models (Polar, Direct Accretor and Electric Star) to account for the observational characteristics of these systems. All models have difficulties with some aspects of the observations, but none can be excluded with confidence at present. The Electric Star model provides the best description, but the lifetime of this phase requires further investigation. These ultra-short period binaries will be strong gravitational wave emitters in the LISA bandpass, and because of their known source properties will be important early targets for gravitational wave studies.
100 - F. Acerbi , R. Michel , C. Barani 2019
We present the results of our study of the eclipsing binary systems CSS J112237.1+395219, LINEAR 1286561 and LINEAR 2602707 based on new CCD $B$, $V$, $R_c$ and $I_c$ complete light curves. The ultra-short period nature of the stars citep{Drake2014} is confirmed and the systems periods are revised. The light curves were modelled using the 2005 version of the Wilson-Devinney code. When necessary, cool spots on the surface of the primary component were introduced to account for asymmetries in the light curves. As a result, we found that CSS J112237.1+395219 is a W UMa type contact binary system belonging to W subclass with a mass ratio of $q=1.61$ and a shallow degree of contact of 14.8% where the primary component is hotter than the secondary one by $500K$. LINEAR 1286561 and LINEAR 2602707 are detached binary systems with mass ratios $q=3.467$ and $q=0.987$ respectively. These detached systems are low-mass M-type eclipsing binaries of similar temperatures. The marginal contact, the fill-out factor and the temperature difference between components of CSS J112237.1+395219 suggest that this system may be at a key evolutionary state predicted by the Thermal Relaxation Oscillation theory (TRO). From the estimated absolute parameters we conclude that our systems share common properties with others ultra-short period binaries.
We report on the search for new eclipsing white dwarf plus main-sequence (WDMS) binaries in the light curves of the Catalina surveys. We use a colour selected list of almost 2000 candidate WDMS systems from the Sloan Digital Sky Survey, specifically designed to identify WDMS systems with cool white dwarfs and/or early M type main-sequence stars. We identify a total of 17 eclipsing systems, 14 of which are new discoveries. We also find 3 candidate eclipsing systems, 2 main-sequence eclipsing binaries and 22 non-eclipsing close binaries. Our newly discovered systems generally have optical fluxes dominated by the main-sequence components, which have earlier spectral types than the majority of previously discovered eclipsing systems. We find a large number of ellipsoidally variable binaries with similar periods, near 4 hours, and spectral types M2--3, which are very close to Roche-lobe filling. We also find that the fraction of eclipsing systems is lower than found in previous studies and likely reflects a lower close binary fraction among WDMS binaries with early M-type main-sequence stars due to their enhanced angular momentum loss compared to fully convective late M type stars, hence causing them to become cataclysmic variables quicker and disappear from the WDMS sample. Our systems bring the total number of known detached, eclipsing WDMS binaries to 71.
We report on the discovery of four ultra-short period (P<0.18 days) eclipsing M-dwarf binaries in the WFCAM Transit Survey. Their orbital periods are significantly shorter than of any other known main-sequence binary system, and are all significantly below the sharp period cut-off at P~0.22 days as seen in binaries of earlier type stars. The shortest-period binary consists of two M4 type stars in a P=0.112 day orbit. The binaries are discovered as part of an extensive search for short-period eclipsing systems in over 260,000 stellar lightcurves, including over 10,000 M-dwarfs down to J=18 mag, yielding 25 binaries with P<0.23 days. In a popular paradigm, the evolution of short period binaries of cool main-sequence stars is driven by loss of angular momentum through magnetised winds. In this scheme, the observed P~0.22 day period cut-off is explained as being due to timescales that are too long for lower-mass binaries to decay into tighter orbits. Our discovery of low-mass binaries with significantly shorter orbits implies that either these timescales have been overestimated for M-dwarfs, e.g. due to a higher effective magnetic activity, or that the mechanism for forming these tight M-dwarf binaries is different from that of earlier type main-sequence stars.
As a significant fraction of stars are in multiple systems, binaries play a crucial role in stellar evolution. Among short-period (<1 day) binary characteristics, age remains one of the most difficult to measure. In this paper, we constrain the lifet ime of short-period binaries through their kinematics. With the kinematic information from Gaia Data Release 2 and light curves from {it Wide-field Infrared Survey Explorer} (WISE), we investigate the eclipsing binary fraction as a function of kinematics for a volume-limited main-sequence sample. We find that the eclipsing binary fraction peaks at a tangential velocity of $10^{1.3-1.6}$ km/s, and decreases towards both low and high velocity end. This implies that thick disk and halo stars have eclipsing binary fraction $gtrsim 10$ times smaller than the thin-disk stars. This is further supported by the dependence of eclipsing binary fraction on the Galactic latitude. Using Galactic models, we show that our results are inconsistent with any known dependence of binary fraction on metallicity. Instead, our best-fit models suggest that the formation of these short-period binaries is delayed by 0.6-3 Gyr, and the disappearing time is less than the age of the thick disk. The delayed formation time of $gtrsim0.6$ Gyr implies that these short-period main-sequence binaries cannot be formed by pre-main sequence interaction and the Kozai-Lidov mechanism alone, and suggests that magnetic braking plays a key role in their formation. Because the main-sequence lifetime of our sample is longer than 14 Gyr, if the disappearance of short-period binaries in the old population is due to their finite lifetime, our results imply that most ($gtrsim90$%) short-period binaries in our sample merge during their main-sequence stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا