ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of models for $(infty, n)$-categories, II

221   0   0.0 ( 0 )
 نشر من قبل Julia Bergner
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we complete a chain of explicit Quillen equivalences between the model category for $Theta_{n+1}$-spaces and the model category of small categories enriched in $Theta_n$-spaces. The Quillen equivalences given here connect Segal category objects in $Theta_n$-spaces, complete Segal objects in $Theta_n$-spaces, and $Theta_{n+1}$-spaces.



قيم البحث

اقرأ أيضاً

211 - Julia E. Bergner 2018
We give describe several models for $(infty,n)$-categories, with an emphasis on models given by diagrams of sets and simplicial sets. We look most closely at the cases when $n leq 2$, then summarize methods of generalizing for all $n$.
199 - Rune Haugseng 2015
We introduce a notion of bimodule in the setting of enriched $infty$-categories, and use this to construct a double $infty$-category of enriched $infty$-categories where the two kinds of 1-morphisms are functors and bimodules. We then consider a natu ral definition of natural transformations in this context, and show that in the underlying $(infty,2)$-category of enriched $infty$-categories with functors as 1-morphisms the 2-morphisms are given by natural transformations.
Let $f:Gto mathrm{Pic}(R)$ be a map of $E_infty$-groups, where $mathrm{Pic}(R)$ denotes the Picard space of an $E_infty$-ring spectrum $R$. We determine the tensor $Xotimes_R Mf$ of the Thom $E_infty$-$R$-algebra $Mf$ with a space $X$; when $X$ is th e circle, the tensor with $X$ is topological Hochschild homology over $R$. We use the theory of localizations of $infty$-categories as a technical tool: we contribute to this theory an $infty$-categorical analogue of Days reflection theorem about closed symmetric monoidal structures on localizations, and we prove that for a smashing localization $L$ of the $infty$-category of presentable $infty$-categories, the free $L$-local presentable $infty$-category on a small simplicial set $K$ is given by presheaves on $K$ valued on the $L$-localization of the $infty$-category of spaces. If $X$ is a pointed space, a map $g: Ato B$ of $E_infty$-ring spectra satisfies $X$-base change if $Xotimes B$ is the pushout of $Ato Xotimes A$ along $g$. Building on a result of Mathew, we prove that if $g$ is etale then it satisfies $X$-base change provided $X$ is connected. We also prove that $g$ satisfies $X$-base change provided the multiplication map of $B$ is an equivalence. Finally, we prove that, under some hypotheses, the Thom isomorphism of Mahowald cannot be an instance of $S^0$-base change.
123 - Rune Haugseng 2019
Using the description of enriched $infty$-operads as associative algebras in symmetric sequences, we define algebras for enriched $infty$-operads as certain modules in symmetric sequences. For $mathbf{V}$ a nice symmetric monoidal model category, we prove that strict algebras for $Sigma$-cofibrant operads in $mathbf{V}$ are equivalent to algebras in the associated symmetric monoidal $infty$-category in this sense. We also show that $mathcal{O}$-algebras in $mathcal{V}$ can equivalently be described as morphisms of $infty$-operads from $mathcal{O}$ to endomorphism operads of (families of) objects of $mathcal{V}$.
216 - Nick Gurski , Niles Johnson , 2015
We establish an equivalence of homotopy theories between symmetric monoidal bicategories and connective spectra. For this, we develop the theory of $Gamma$-objects in 2-categories. In the course of the proof we establish strictfication results of ind ependent interest for symmetric monoidal bicategories and for diagrams of 2-categories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا