ﻻ يوجد ملخص باللغة العربية
In this Letter we regard nonlinear gravity-capillary waves with parameter of nonlinearity being $varepsilon sim 0.1 div 0.25$. For this nonlinearity time scale separation does not occur and kinetic wave equation does not hold. An energy cascade in this case is built at the dynamic time scale (D-cascade) and is computed by the increment chain equation method first introduced in emph{Kartashova, emph{EPL} textbf{97} (2012), 30004.} We compute for the first time an analytical expression for the energy spectrum of nonlinear gravity-capillary waves as an explicit function depending on the ratio of surface tension to the gravity acceleration. It is shown that its two limits - pure capillary and pure gravity waves on a fluid surface - coincide with the previously obtained results. We also discuss relations of the model of D-cascade with a few known models used in the theory of nonlinear waves such as Zakharovs equation, resonance of the modes with nonlinear Stokes corrected frequencies and Benjamin-Feir index. These connections are crucial in the understanding and forecasting specifics of the energy transport in a variety of multi-component wave dynamics, from oceanography to optics, from plasma physics to acoustics.
We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility which is a 13-m diamete
We investigate experimentally stratified turbulence forced by waves. Stratified turbulence is present in oceans and it is expected to be dominated by nonlinear interaction of internal gravity waves as described by the Garrett & Munk spectrum. In orde
We report on the observation of gravity-capillary wave turbulence on the surface of a fluid in a high-gravity environment. By using a large-diameter centrifuge, the effective gravity acceleration is tuned up to 20 times the Earth gravity. The transit
We introduce a dynamic stabilization scheme universally applicable to unidirectional nonlinear coherent waves. By abruptly changing the waveguiding properties, the breathing of wave packets subject to modulation instability can be stabilized as a res
In this paper, we numerically study the wave turbulence of surface gravity waves in the framework of Euler equations of the free surface. The purpose is to understand the variation of the scaling of the spectra with wavenumber $k$ and energy flux $P$