ﻻ يوجد ملخص باللغة العربية
In a recent paper we proposed a non-Markovian random walk model with memory of the maximum distance ever reached from the starting point (home). The behavior of the walker is at variance with respect to the simple symmetric random walk (SSRW) only when she is at this maximum distance, where, having the choice to move either farther or closer, she decides with different probabilities. If the probability of a forward step is higher then the probability of a backward step, the walker is bold and her behavior turns out to be super-diffusive, otherwise she is timorous and her behavior turns out to be sub-diffusive. The scaling behavior vary continuously from sub-diffusive (timorous) to super-diffusive (bold) according to a single parameter $gamma in R$. We investigate here the asymptotic properties of the bold case in the non ballistic region $gamma in [0,1/2]$, a problem which was left partially unsolved in cite{S}. The exact results proved in this paper require new probabilistic tools which rely on the construction of appropriate martingales of the random walk and its hitting times.
Spectral properties of Hermitian Toeplitz, Hankel, and Toeplitz-plus-Hankel random matrices with independent identically distributed entries are investigated. Combining numerical and analytic arguments it is demonstrated that spectral statistics of a
We construct a distorted Fourier transformation associated with the multi-dimensional quantum walk. In order to avoid the complication of notations, almost all of our arguments are restricted to two dimensional quantum walks (2DQWs) without loss of g
In this paper, we show that a generalization of the discrete Burgers equation can be obtained by a kind of discrete Cole--Hopf transformation to the discrete diffusion equation corresponding to the correlated random walk, which is also known as a gen
In this paper we consider a particular version of the random walk with restarts: random reset events which bring suddenly the system to the starting value. We analyze its relevant statistical properties like the transition probability and show how an
Max-plus algebra is a kind of idempotent semiring over $mathbb{R}_{max}:=mathbb{R}cup{-infty}$ with two operations $oplus := max$ and $otimes := +$.In this paper, we introduce a new model of a walk on one dimensional lattice on $mathbb{Z}$, as an ana