ﻻ يوجد ملخص باللغة العربية
We present a detailed derivation of the Gutzwiller Density Functional Theory that covers all conceivable cases of symmetries and Gutzwiller wave functions. The method is used in a study of ferromagnetic nickel where we calculate ground state properties (lattice constant, bulk modulus, spin magnetic moment) and the quasi-particle band structure. Our method resolves most shortcomings of an ordinary Density Functional calculation on nickel. However, the quality of the results strongly depends on the particular choice of the double-counting correction. This constitutes a serious problem for all methods that attempt to merge Density Functional Theory with correlated-electron approaches based on Hubbard-type local interactions.
We use the Gutzwiller Density Functional Theory to calculate ground-state properties and bandstructures of iron in its body-centered-cubic (bcc) and hexagonal-close-packed (hcp) phases. For a Hubbard interaction $U=9, {rm eV}$ and Hunds-rule coupling
The ground states of Na$_x$CoO$_2$ ($0.0<x<1.0$) is studied by the LDA+Gutzwiller approach, where charge transfer and orbital fluctuations are all self-consistently treated {it ab-initio}. In contrast to previous studies, which are parameter-dependen
The multi-band Gutzwiller method, combined with calculations based on density functional theory, is employed to study total energy curves of the ferromagnetic ground state of Ni. A new method is presented which allows flow of charge between d and s,
According to the Hohenberg-Kohn theorem of density-functional theory (DFT), all observable quantities of systems of interacting electrons can be expressed as functionals of the ground-state density. This includes, in principle, the spin polarization
We present a rigorous formulation of generalized Kohn-Sham density-functional theory. This provides a straightforward Kohn-Sham description of many-body systems based not only on particle-density but also on any other observable. We illustrate the fo