ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Dependent Numerical Renormalization Group Method for Multiple Quenches: Application to General Pulses and Periodic Driving

112   0   0.0 ( 0 )
 نشر من قبل Hoa Nghiem Ms
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The time-dependent numerical renormalization group method (TDNRG) [Anders et al., Phys. Rev. Lett. {bf 95}, 196801 (2005)] was recently generalized to multiple quenches and arbitrary finite temperatures [Nghiem et al., Phys. Rev. B {bf 89}, 075118 (2014)] by using the full density matrix approach [Weichselbaum et al., Phys. Rev. Lett. {bf 99}, 076402 (2007)]. In this paper, we numerically implement this formalism to study the response of a quantum impurity system to a general pulse and periodic driving which are approximated by a sufficient number of quenches. We show how the NRG approximation affects the trace of the projected density matrices and the continuity of the time-evolution of a local observable. For the general pulse case, the local observable in the long-time limit exhibits a dependence on the switch-on time, the time interval between the first and last quenches, as well as on the pulse shape. In particular, the long-time limit is improved for longer switch-on times and smoother pulses. This lends support to our earlier suggestion that the long-time limit of observables can be improved by replacing a sudden large quench by a sequence of smaller ones acting over a finite time-interval: longer switch-on times and smoother pulses, i.e., increased adiabaticity, favor relaxation of the system to its correct thermodynamic long-time limit. For the case of periodic driving, we compare the TDNRG results to exact analytic ones for the non-interacting resonant level model, finding better agreement at short to intermediate time scales in the case of smoother driving. Finally, we demonstrate the validity of the multiple-quench TDNRG formalism for arbitrary temperatures by studying the time-evolution of the occupation number in the Anderson impurity model in response to a periodic switching of the local level from the mixed valence to the Kondo regime at finite temperatures.



قيم البحث

اقرأ أيضاً

We develop an alternative time-dependent numerical renormalization group (TDNRG) formalism for multiple quenches and implement it to study the response of a quantum impurity system to a general pulse. Within this approach, we reduce the contribution of the NRG approximation to numerical errors in the time evolution of observables by a formulation that avoids the use of the generalized overlap matrix elements in our previous multiple-quench TDNRG formalism [Nghiem {em et al.,} Phys. Rev. B {bf 89}, 075118 (2014); Phys. Rev. B {bf 90}, 035129 (2014)]. We demonstrate that the formalism yields a smaller cumulative error in the trace of the projected density matrix as a function of time and a smaller discontinuity of local observables between quenches than in our previous approach. Moreover, by increasing the switch-on time, the time between the first and last quench of the discretized pulse, the long-time limit of observables systematically converges to its expected value in the final state, i.e., the more adiabatic the switching, the more accurately is the long-time limit recovered. The present formalism can be straightforwardly extended to infinite switch-on times. We show that this yields highly accurate results for the long-time limit of both thermodynamic observables and spectral functions, and overcomes the significant errors within the single quench formalism [Anders {em et al.}, Phys. Rev. Lett. {bf 95}, 196801 (2005); Nghiem {em et al.}, Phys. Rev. Lett. {bf 119}, 156601 (2017)]. This improvement provides a first step towards an accurate description of nonequilibrium steady states of quantum impurity systems, e.g., within the scattering states NRG approach [Anders, Phys. Rev. Lett. {bf 101}, 066804 (2008)].
The self-energy method for quantum impurity models expresses the correlation part of the self-energy in terms of the ratio of two Green functions and allows for a more accurate calculation of equilibrium spectral functions, than is possible directly from the one-particle Green function [Bulla {it et al.} Journal of Physics: Condensed Matter {bf 10}, 8365 (1998)], for example, within the numerical renormalization group method. In addition, the self-energy itself is a central quantity required in the dynamical mean field theory of strongly correlated lattice models. Here, we show how to generalize the self-energy method to the time-dependent situation for the prototype model of strong correlations, the Anderson impurity model . We use the equation of motion method to obtain closed expressions for the local Green function in terms of a time-dependent correlation self-energy, with the latter being given as a ratio of a two- and a one-particle time-dependent Green function. We benchmark this self-energy approach to time-dependent spectral functions against the direct approach within the time-dependent numerical renormalization group method. The self-energy approach improves the accuracy of time-dependent spectral function calculations, and, the closed form expressions for the Green function allow for a clear picture of the time-evolution of spectral features at the different characteristic time-scales. The self-energy approach is of potential interest also for other quantum impurity solvers for real-time evolution, including time-dependent density matrix renormalization group and continuous time quantum Monte Carlo techniques.
We introduce a block Lanczos (BL) recursive technique to construct quasi-one-dimensional models, suitable for density-matrix renormalization group (DMRG) calculations, from single- as well as multiple-impurity Anderson models in any spatial dimension s. This new scheme, named BL-DMRG method, allows us to calculate not only local but also spatially dependent static and dynamical quantities of the ground state for general Anderson impurity models without losing elaborate geometrical information of the lattice. We show that the BL-DMRG method can be easily extended to treat a multi-orbital Anderson impurity model. We also show that the symmetry adapted BL bases can be utilized, when it is appropriate, to reduce the computational cost. As a demonstration, we apply the BL-DMRG method to three different models for graphene: (i) a single adatom on the honeycomb lattice, (ii) a substitutional impurity in the honeycomb lattice, and (iii) an effective model for a single carbon vacancy in graphene. Our analysis reveals that, for the particle-hole symmetric case at half filling of electron density, the ground state of model (i) behaves as an isolated magnetic impurity with no Kondo screening while the ground state of the other two models forms a spin singlet state. We also calculate the real-space dependence of the spin-spin correlation functions between the impurity site and the conduction sites for these three models. Our results clearly show that, reflecting the presence of absence of unscreened magnetic moment at the impurity site, the spin-spin correlation functions decay as $r^{-3}$, differently from the non-interacting limit ($r^{-2}$), for model (i) and as $ r^{-4}$, exactly the same as the non-interacting limit, for models (ii) and (iii) in the asymptotic $r$, where $r$ is the distance between the impurity site and the conduction site.
We introduce a real time version of the functional renormalization group which allows to study correlation effects on nonequilibrium transport through quantum dots. Our method is equally capable to address (i) the relaxation out of a nonequilibrium i nitial state into a (potentially) steady state driven by a bias voltage and (ii) the dynamics governed by an explicitly time-dependent Hamiltonian. All time regimes from transient to asymptotic can be tackled; the only approximation is the consistent truncation of the flow equations at a given order. As an application we investigate the relaxation dynamics of the interacting resonant level model which describes a fermionic quantum dot dominated by charge fluctuations. Moreover, we study decoherence and relaxation phenomena within the ohmic spin-boson model by mapping the latter to the interacting resonant level model.
The tunneling conductance is calculated as a function of the gate voltage in wide temperature range for the single quantum dot systems with Coulomb interaction. We assume that two orbitals are active for the tunneling process. We show that the Kondo temperature for each orbital channel can be largely different. The tunneling through the Kondo resonance almost fully develops in the region $T lsim 0.1 T_{K}^{*} sim 0.2 T_{K}^{*}$, where $T_{K}^{*}$ is the lowest Kondo temperature when the gate voltage is varied. At high temperatures the conductance changes to the usual Coulomb oscillations type. In the intermediate temperature region, the degree of the coherency of each orbital channel is different, so strange behaviors of the conductance can appear. For example, the conductance once increases and then decreases with temperature decreasing when it is suppressed at T=0 by the interference cancellation between different channels. The interaction effects in the quantum dot systems lead the sensitivities of the conductance to the temperature and to the gate voltage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا