ﻻ يوجد ملخص باللغة العربية
The time-dependent numerical renormalization group method (TDNRG) [Anders et al., Phys. Rev. Lett. {bf 95}, 196801 (2005)] was recently generalized to multiple quenches and arbitrary finite temperatures [Nghiem et al., Phys. Rev. B {bf 89}, 075118 (2014)] by using the full density matrix approach [Weichselbaum et al., Phys. Rev. Lett. {bf 99}, 076402 (2007)]. In this paper, we numerically implement this formalism to study the response of a quantum impurity system to a general pulse and periodic driving which are approximated by a sufficient number of quenches. We show how the NRG approximation affects the trace of the projected density matrices and the continuity of the time-evolution of a local observable. For the general pulse case, the local observable in the long-time limit exhibits a dependence on the switch-on time, the time interval between the first and last quenches, as well as on the pulse shape. In particular, the long-time limit is improved for longer switch-on times and smoother pulses. This lends support to our earlier suggestion that the long-time limit of observables can be improved by replacing a sudden large quench by a sequence of smaller ones acting over a finite time-interval: longer switch-on times and smoother pulses, i.e., increased adiabaticity, favor relaxation of the system to its correct thermodynamic long-time limit. For the case of periodic driving, we compare the TDNRG results to exact analytic ones for the non-interacting resonant level model, finding better agreement at short to intermediate time scales in the case of smoother driving. Finally, we demonstrate the validity of the multiple-quench TDNRG formalism for arbitrary temperatures by studying the time-evolution of the occupation number in the Anderson impurity model in response to a periodic switching of the local level from the mixed valence to the Kondo regime at finite temperatures.
We develop an alternative time-dependent numerical renormalization group (TDNRG) formalism for multiple quenches and implement it to study the response of a quantum impurity system to a general pulse. Within this approach, we reduce the contribution
The self-energy method for quantum impurity models expresses the correlation part of the self-energy in terms of the ratio of two Green functions and allows for a more accurate calculation of equilibrium spectral functions, than is possible directly
We introduce a block Lanczos (BL) recursive technique to construct quasi-one-dimensional models, suitable for density-matrix renormalization group (DMRG) calculations, from single- as well as multiple-impurity Anderson models in any spatial dimension
We introduce a real time version of the functional renormalization group which allows to study correlation effects on nonequilibrium transport through quantum dots. Our method is equally capable to address (i) the relaxation out of a nonequilibrium i
The tunneling conductance is calculated as a function of the gate voltage in wide temperature range for the single quantum dot systems with Coulomb interaction. We assume that two orbitals are active for the tunneling process. We show that the Kondo