ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic behaviour of Maxwell fields in higher dimensions

136   0   0.0 ( 0 )
 نشر من قبل Marcello Ortaggio
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marcello Ortaggio




اسأل ChatGPT حول البحث

We study the fall-off behaviour of test electromagnetic fields in higher dimensions as one approaches infinity along a congruence of expanding null geodesics. The considered backgrounds are Einstein spacetimes including, in particular, (asymptotically) flat and (anti-)de Sitter spacetimes. Various possible boundary conditions result in different characteristic fall-offs, in which the leading component can be of any algebraic type (N, II or G). In particular, the peeling-off of radiative fields F=Nr^{1-n/2}+Gr^{-n/2}+... differs from the standard four-dimensional one (instead it qualitatively resembles the recently determined behaviour of the Weyl tensor in higher dimensions). General p-form fields are also briefly discussed. In even n dimensions, the special case p=n/2 displays unique properties and peels off in the standard way as F=Nr^{1-n/2}+IIr^{-n/2}+.... A few explicit examples are mentioned.



قيم البحث

اقرأ أيضاً

We obtain a full characterization of Einstein-Maxwell $p$-form solutions $(boldsymbol{g},boldsymbol{F})$ in $D$-dimensions for which all higher-order corrections vanish identically. These thus simultaneously solve a large class of Lagrangian theories including both modified gravities and (possibly non-minimally coupled) modified electrodynamics. Specifically, both $boldsymbol{g}$ and $boldsymbol{F}$ are fields with vanishing scalar invariants and further satisfy two simple tensorial conditions. They describe a family of gravitational and electromagnetic plane-fronted waves of the Kundt class and of Weyl type III (or more special). The local form of $(boldsymbol{g},boldsymbol{F})$ and a few examples are also provided.
We present the study of exact inhomogeneous cosmological solutions to a four-dimensional low energy limit of string theory containing non-minimal interacting electromagnetic, dilaton and axion fields. We analyze Einstein-Rosen solutions of Einstein-M axwell-dilaton-axion equations and show, by explicitly taken the asymptotic limits, that they have asymptotically velocity-term dominated (AVTD) singularities.
We show that the causal properties of asymptotically flat spacetimes depend on their dimensionality: while the time-like future of any point in the past conformal infinity $mathcal{I}^-$ contains the whole of the future conformal infinity $mathcal{I} ^+$ in $(2+1)$ and $(3+1)$ dimensional Schwarzschild spacetimes, this property (which we call the Penrose property) does not hold for $(d+1)$ dimensional Schwarzschild if $d>3$. We also show that the Penrose property holds for the Kerr solution in $(3+1)$ dimensions, and discuss the connection with scattering theory in the presence of positive mass.
71 - A. Coley 2002
We shall investigate $D$-dimensional Lorentzian spacetimes in which all of the scalar invariants constructed from the Riemann tensor and its covariant derivatives are zero. These spacetimes are higher-dimensional generalizations of $D$-dimensional pp -wave spacetimes, which have been of interest recently in the context of string theory in curved backgrounds in higher dimensions.
We prove that any asymptotically flat static spacetime in higher dimensional Einstein-Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black h oles in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein-Maxwell theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا