ترغب بنشر مسار تعليمي؟ اضغط هنا

Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET

55   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract

قيم البحث

اقرأ أيضاً

Context. The increased sensitivity and high spectral resolution of millimeter telescopes allow the detection of an increasing number of isotopically substituted molecules in the interstellar medium. The 14N/ 15N ratio is difficult to measure directly for carbon containing molecules. Aims. We want to check the underlying hypothesis that the 13C/ 12C ratio of nitriles and isonitriles is equal to the elemental value via a chemical time dependent gas phase chemical model. Methods. We have built a chemical network containing D, 13C and 15N molecular species after a careful check of the possible fractionation reactions at work in the gas phase. Results. Model results obtained for 2 different physical conditions corresponding respectively to a moderately dense cloud in an early evolutionary stage and a dense depleted pre-stellar core tend to show that ammonia and its singly deuterated form are somewhat enriched in 15N, in agreement with observations. The 14N/ 15N ratio in N2H+ is found to be close to the elemental value, in contrast to previous models which obtain a significant enrichment, as we found that the fractionation reaction between 15N and N2H+ has a barrier in the entrance channel. The large values of the N2H+/15NNH+ and N2H+/ N15NH+ ratios derived in L1544 cannot be reproduced in our model. Finally we find that nitriles and isonitriles are in fact significantly depleted in 13C, questioning previous interpretations of observed C15N, HC15N and H15NC abundances from 13C containing isotopologues.
A detailed understanding of island seeding is crucial to avoid (N)TMs and their negative consequences like confinement degradation and disruptions. In the present work, we investigate the growth of 2/1 islands in response to magnetic perturbations. A lthough we use externally applied perturbations produced by resonant magnetic perturbation (RMP) coils for this study, results are directly transferable to island seeding by other MHD instabilities creating a resonant magnetic field component at the rational surface. Experimental results for 2/1 island penetration from ASDEX Upgrade are presented extending previous studies. Simulations are based on an ASDEX Upgrade L-mode discharge with low collisionality and active RMP coils. Our numerical studies are performed with the 3D, two fluid, non-linear MHD code JOREK. All three phases of mode seeding observed in the experiment are also seen in the simulations: first a weak response phase characterized by large perpendicular electron flow velocities followed by a fast growth of the magnetic island size accompanied by a reduction of the perpendicular electron velocity, and finally the saturation to a fully formed island state with perpendicular electron velocity close to zero. Thresholds for mode penetration are observed in the plasma rotation as well as in the RMP coil current. A hysteresis of the island size and electron perpendicular velocity is observed between the ramping up and down of the RMP amplitude consistent with an analytically predicted bifurcation. The transition from dominant kink/bending to tearing parity during the penetration is investigated.
This paper compares the gyrokinetic instabilities and transport in two representative JET pedestals, one (pulse 78697) from the JET configuration with a carbon wall (C) and another (pulse 92432) from after the installation of JETs ITER-like Wall (ILW ). The discharges were selected for a comparison of JET-ILW and JET-C discharges with good confinement at high current (3 MA, corresponding also to low $rho_*$) and retain the distinguishing features of JET-C and JET-ILW, notably, decreased pedestal top temperature for JET-ILW. A comparison of the profiles and heating power reveals a stark qualitative difference between the discharges: the JET-ILW pulse (92432) requires twice the heating power, at a gas rate of $1.9 times 10^{22}e/s$, to sustain roughly half the temperature gradient of the JET-C pulse (78697), operated at zero gas rate. This points to heat transport as a central component of the dynamics limiting the JET-ILW pedestal and reinforces the following emerging JET-ILW pedestal transport paradigm, which is proposed for further examination by both theory and experiment. ILW conditions modify the density pedestal in ways that decrease the normalized pedestal density gradient $a/L_n$, often via an outward shift of the density pedestal. This is attributable to some combination of direct metal wall effects and the need for increased fueling to mitigate tungsten contamination. The modification to the density profile increases $eta = L_n/L_T$ , thereby producing more robust ion temperature gradient (ITG) and electron temperature gradient driven instability. The decreased pedestal gradients for JET-ILW (92432) also result in a strongly reduced $E times B$ shear rate, further enhancing the ion scale turbulence. Collectively, these effects limit the pedestal temperature and demand more heating power to achieve good pedestal performance.
The core micro-instability characteristics of hybrid and baseline plasmas in a selected set of JET plasmas with carbon wall are investigated through local linear and non-linear and global linear gyro-kinetic simulations with the GYRO code [J. Candy a nd E. Belli, General Atomics Report GA-A26818 (2011)]. In particular, we study the role of plasma pressure on the micro-instabilities, and scan the parameter space for the important plasma parameters responsible for the onset and stabilization of the modes under experimental conditions. We find that a good core confinement due to strong stabilization of the micro-turbulence driven transport can be expected in the hybrid plasmas due to the stabilizing effect of the fast ion pressure that is more effective at the low magnetic shear of the hybrid discharges. While parallel velocity gradient destabilization is important for the inner core, at outer radii the hybrid plasmas may benefit from a strong quench of the turbulence transport by $mathbf{E}timesmathbf{B}$ rotation shear.
An H-mode plasma state free of edge-localized mode (ELM), close to the L-H transition with clear density and temperature pedestal has been observed both at the Joint European Torus (JET) and at the ASDEX Upgrade (AUG) tokamaks usually identified by a low frequency (LFO, 1-2 kHz), m=1, n=0 oscillation of the magnetics and the modulation of pedestal profiles. The regime at JET is referred to as M-mode while at AUG as intermediate phase or I-phase. This contribution aims at a comparative analysis of these phenomena in terms of the density and temperature pedestal properties, the magnetic oscillations and symmetries. Lithium beam emission spectroscopy (Li-BES) and reflectometer measurements at JET and AUG show that the M-mode and the I-phase modulates the plasma edge density. A high frequency oscillation of the magnetics and the density at the pedestal is also associated with both the M-mode and the I-phase, and its power is modulated with the LFO frequency. The power modulation happens simultaneously in every Mirnov coil signal where it can be detected. The bursts of the magnetic signals and the density at the pedestal region are followed by the flattening of the density profile, and by a radially outward propagating density pulse in the scrape-off layer (SOL). The analysis of the helium line ratio spectroscopy (He-BES) signals at AUG revealed that the electron temperature is modulated in phase with the density, thus the I-phase modulates the pressure profile gradient. This analysis gave opportunity to compare Li-BES and He-BES density profiles at different locations suggesting a toroidal and poloidal symmetry of the density modulation. The presented results indicate that the regimes, the AUG I-phase and the JET M-mode, exhibit similar characteristics, which leads to the conclusion that the regimes are likely the same.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا