ﻻ يوجد ملخص باللغة العربية
Let $Omega$ be a smooth bounded domain in $R^n$, $nge 3$, $0<mlefrac{n-2}{n}$, $a_1,a_2,..., a_{i_0}inOmega$, $delta_0=min_{1le ile i_0}{dist }(a_i,1Omega)$ and let $Omega_{delta}=Omegasetminuscup_{i=1}^{i_0}B_{delta}(a_i)$ and $hat{Omega}=Omegasetminus{a_1,...,a_{i_0}}$. For any $0<delta<delta_0$ we will prove the existence and uniqueness of positive solution of the Neumann problem for the equation $u_t=Delta u^m$ in $Omega_{delta}times (0,T)$ for some $T>0$. We will prove the existence of singular solutions of this equation in $hat{Omega}times (0,T)$ for some $T>0$ that blow-up at the points $a_1,..., a_{i_0}$.
We study the asymptotic large time behavior of singular solutions of the fast diffusion equation $u_t=Delta u^m$ in $({mathbb R}^nsetminus{0})times(0,infty)$ in the subcritical case $0<m<frac{n-2}{n}$, $nge3$. Firstly, we prove the existence of singu
Let $OmegasubsetR^n$ be a smooth bounded domain and let $a_1,a_2,dots,a_{i_0}inOmega$, $widehat{Omega}=Omegasetminus{a_1,a_2,dots,a_{i_0}}$ and $widehat{R^n}=R^nsetminus{a_1,a_2,dots,a_{i_0}}$. We prove the existence of solution $u$ of the fast diffu
We study extinction profiles of solutions to fast diffusion equations with some initial data in the Marcinkiewicz space. The extinction profiles will be the singular solutions of their stationary equations.
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bs
Let $ngeq 3$, $0< m<frac{n-2}{n}$ and $T>0$. We construct positive solutions to the fast diffusion equation $u_t=Delta u^m$ in $mathbb{R}^ntimes(0,T)$, which vanish at time $T$. By introducing a scaling parameter $beta$ inspired by cite{DKS}, we stud