ﻻ يوجد ملخص باللغة العربية
The counting and (upper) mass dimensions are notions of dimension for subsets of $mathbb{Z}^d$. We develop their basic properties and give a characterization of the counting dimension via coverings. In addition, we prove Marstrand-type results for both dimensions. For example, if $A subseteq mathbb{R}^d$ has counting dimension $D(A)$, then for almost every orthogonal projection with range of dimension $k$, the counting dimension of the image of $A$ is at least $min big(k,D(A)big)$. As an application, for subsets $A_1, ldots, A_d$ of $mathbb{R}$, we are able to give bounds on the counting and mass dimensions of the sumset $c_1 A_1 + cdots + c_d A_d$ for Lebesgue-almost every $c in mathbb{R}^d$. This work extends recent work of Y. Lima and C. G. Moreira.
We introduce the notions of directional dynamical cubes and directional regionally proximal relation defined via these cubes for a minimal $mathbb{Z}^d$-system $(X,T_1,ldots,T_d)$. We study the structural properties of systems that satisfy the so cal
We study the topological entropy of hom tree-shifts and show that, although the topological entropy is not conjugacy invariant for tree-shifts in general, it remains invariant for hom tree higher block shifts. In doi:10.1016/j.tcs.2018.05.034 and doi
We study the periodic orbits problem on energy levels of Tonelli Lagrangian systems over configuration spaces of arbitrary dimension. We show that, when the fundamental group is finite and the Lagrangian has no stationary orbit at the Ma~ne critical
For $d ge 2$ and all $qgeq q_{0}(d)$ we give an efficient algorithm to approximately sample from the $q$-state ferromagnetic Potts and random cluster models on the torus $(mathbb Z / n mathbb Z )^d$ for any inverse temperature $betageq 0$. This stand
We give an FPTAS for computing the number of matchings of size $k$ in a graph $G$ of maximum degree $Delta$ on $n$ vertices, for all $k le (1-delta)m^*(G)$, where $delta>0$ is fixed and $m^*(G)$ is the matching number of $G$, and an FPTAS for the num