ترغب بنشر مسار تعليمي؟ اضغط هنا

Moat flow system around sunspots in shallow subsurface layers

135   0   0.0 ( 0 )
 نشر من قبل Michal \\v{S}vanda
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. v{S}vanda




اسأل ChatGPT حول البحث

We investigate subsurface moat flow system around symmetrical sunspots of McIntosh type H and compare it to the flow system within supergranular cells. Representatives of both types of flows are constructed by means of statistical averaging of flow maps obtained by time--distance helioseismic

قيم البحث

اقرأ أيضاً

We investigate the vertical gradient of the magnetic field of sunspots in the photospheric layer. Independent observations were obtained with the SOT/SP onboard the Hinode spacecraft and with the TIP-2 mounted at the VTT. We apply state-of-the-art in version techniques to both data sets to retrieve the magnetic field and the corresponding vertical gradient. In the sunspot penumbrae we detected patches of negative vertical gradients of the magnetic field strength, i.e.,the magnetic field strength decreases with optical depth in the photosphere. The negative gradient patches are located in the inner and partly in the middle penumbrae in both data sets. From the SOT/SP observations, we found that the negative gradient patches are restricted mainly to the deep photospheric layers and are concentrated near the edges of the penumbral filaments. MHD simulations also show negative gradients in the inner penumbrae, also at the locations of filaments. Both in the observations and simulation negative gradients of the magnetic field vs. optical depth dominate at some radial distances in the penumbra. The negative gradient with respect to optical depth in the inner penumbrae persists even after averaging in the azimuthal direction, both in the observations and, to a lesser extent, also in MHD simulations. We interpret the observed localized presence of the negative vertical gradient of the magnetic field strength in the observations as a consequence of stronger field from spines expanding with height and closing above the weaker field inter-spines. The presence of the negative gradients with respect to optical depth after azimuthal averaging can be explained by two different mechanisms: the high corrugation of equal optical depth surfaces and the cancellation of polarized signal due to the presence of unresolved opposite polarity patches in the deeper layers of the penumbra.
64 - Robert Sych 2015
The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission variability. Dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, investigates the oscillation frequency transformation depending on the wave energy is shown. The initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks are discussed. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves. A short review of theoretical models of sunspot oscillations is provided.
Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio $q =3.25$ and a degree of contact factor f=9.4(pm0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair results in a massive third body with $M_3=1.73M_{odot}$ and P_3=87.0$yr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75yr and its mass is about $0.278M_{odot}$. Both of the cases suggest the presence of an unseen third component in the system.
In this work we seek evidence for global torsional oscillations in alpha sunspots. We have used long time series of continuum intensity and magnetic field vector maps from the Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynam ics Observatory (SDO) spacecraft. The time series analysed here span the total disk passage of 25 isolated sunspots. We found no evidence of global long-term periodic oscillations in the azimuthal angle of the sunspot magnetic field within $sim$ 1 degree. This study could help us to understand the sunspot dynamics and its internal structure.
139 - R. Howe , F. Hill , R. Komm 2018
The pattern of migrating zonal flow bands associated with the solar cycle, known as the torsional oscillation, has been monitored with continuous global helioseismic observations by the Global Oscillations Network Group, together with those made by t he Michelson Doppler Imager onboard the Solar and Heliosepheric Observatory and its successor the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory, since 1995, giving us nearly two full solar cycles of observations. We report that the flows now show traces of the mid-latitude acceleration that is expected to become the main equatorward-moving branch of the zonal flow pattern for Cycle 25. Based on the current position of this branch, we speculate that the onset of widespread activity for Cycle 25 is unlikely to be earlier than the middle of 2019.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا