ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic-field enhanced aniferromagnetism in non-centrosymmetric heavy-fermion superconductor CePt$_3$Si

235   0   0.0 ( 0 )
 نشر من قبل Koji Kaneko
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of magnetic field on the static and dynamic spin correlations in the non-centrosymmetric heavy-fermion superconductor CePt$_3$Si was investigated by neutron scattering. The application of a magnetic field B increases the antiferromagnetic (AFM) peak intensity. This increase depends strongly on the field direction: for B${parallel}$[0 0 1] the intensity increases by a factor of 4.6 at a field of 6.6 T, which corresponds to more than a doubling of the AFM moment, while the moment increases by only 10 % for B${parallel}$[1 0 0] at 5 T. This is in strong contrast to the inelastic response near the antiferromagnetic ordering vector, where no marked field variations are observed for B${parallel}$[0 0 1] up to 3.8 T. The results reveal that the AFM state in CePt$_3$Si, which coexists with superconductivity, is distinctly different from other unconventional superconductors.



قيم البحث

اقرأ أيضاً

$rm CePt_3Si$ is a novel heavy fermion superconductor, crystallising in the $rm CePt_3B$ structure as a tetragonally distorted low symmetry variant of the $rm AuCu_3$ structure type. $rm CePt_3Si$ exhibits antiferromagnetic order at $T_N approx 2.2$ K and enters into a heavy fermion superconducting state at $T_c approx 0.75$ K. Large values of $H_{c2} approx -8.5$ T/K and $H_{c2}(0) approx 5$ T refer to heavy quasiparticles forming Cooper pairs. Hitherto, $rm CePt_3Si$ is the first heavy fermion superconductor without a center of symmetry.
289 - N. Kimura , I. Bonalde 2012
In this chapter we discuss the physical properties of a particular family of non-centrosymmetric superconductors belonging to the class heavy-fermion compounds. This group includes the ferromagnet UIr and the antiferromagnets CeRhSi3, CeIrSi3, CeCoGe 3, CeIrGe3 and CePt3Si, of which all but CePt3Si become superconducting only under pressure. Each of these superconductors has intriguing and interesting properties. We first analyze CePt3Si, then review CeRhSi3, CeIrSi3, CeCoGe3 and CeIrGe3, which are very similar to each other in their magnetic and electrical properties, and finally discuss UIr. For each material we discuss the crystal structure, magnetic order, occurrence of superconductivity, phase diagram, characteristic parameters, superconducting properties and pairing states. We present an overview of the similarities and differences between all these six compounds at the end.
The crystalline electric field (CEF) energy level scheme of the heavy fermion superconductor CeCoIn_5 has been determined by means of inelastic neutron scattering (INS). Peaks observed in the INS spectra at 8 meV and 27 meV with incident neutron ener gies between E_i=30-60 meV and at a temperature T = 10 K correspond to transitions from the ground state to the two excited states, respectively. The wavevector and temperature dependence of these peaks are consistent with CEF excitations. Fits of the data to a CEF model yield the CEF parameters B^0_2=-0.80 meV, B^0_4=0.059 meV, and |B^4_4|= 0.137 meV corresponding to an energy level scheme: Gamma_7^(1) (0)[=0.487|+/-5/2> - 0.873|-/+3/2>], Gamma_7^(2) (8.6 meV, 100 K), and Gamma_6 (24.4 meV, 283 K).
Understanding the crystal field splitting and orbital polarization in non-centrosymmetric systems such as ferroelectric materials is fundamentally important. In this study, taking BaTiO$_3$ (BTO) as a representative material we investigate titanium c rystal field splitting and orbital polarization in non-centrosymmetric TiO$_6$ octahedra with resonant X-ray linear dichroism at Ti $L_{2,3}$-edge. The high-quality BaTiO$_3$ thin films were deposited on DyScO$_3$ (110) single crystal substrates in a layer-by-layer way by pulsed laser deposition. The reflection high-energy electron diffraction (RHEED) and element specific X-ray absorption spectroscopy (XAS) were performed to characterize the structural and electronic properties of the films. In sharp contrast to conventional crystal field splitting and orbital configuration ($d_{xz}$/$d_{yz}$ $<$ $d_{xy}$ $<$ $d_{3z^2-r^2}$ $<$ $d_{x^2-y^2}$ or $d_{xy}$ $<$ $d_{xz}$/$d_{yz}$ $<$ $d_{x^2-y^2}$ $<$ $d_{3z^2-r^2}$) according to Jahn-Teller effect, it is revealed that $d_{xz}$, $d_{yz}$, and $d_{xy}$ orbitals are nearly degenerate, whereas $d_{3z^2-r^2}$ and $d_{x^2-y^2}$ orbitals are split with an energy gap $sim$ 100 meV in the epitaxial BTO films. The unexpected degenerate states $d_{xz}$/$d_{yz}$/$d_{xy}$ are coupled to Ti-O displacements resulting from competition between polar and Jahn-Teller distortions in non-centrosymmetric TiO$_6$ octhedra of BTO films. Our results provide a route to manipulate orbital degree of freedom by switching electric polarization in ferroelectric materials.
We performed elastic neutron scattering experiments on solid solution CeRh1-xCoxIn5 with x=0.4 to clarify the nature of the antiferromagnetic (AF) phase in the vicinity of the quantum critical point. We observed the incommensurate AF order below T_Nh =3.5 K. The structure of the incommensurate AF order is basically unchanged from that for pure CeRhIn5. We further found the evolution of a new commensurate AF order with the modulation of q_c=(1/2,1/2,1/2) below T_Nc=2.9 K. The volume-averaged moments for the incommensurate and commensurate AF phases are 0.38 mu_B/Ce and 0.21 mu_B/Ce, respectively, which are reduced from the incommensurate AF moment (0.75 mu_B/Ce) for pure CeRhIn5. We suggest from these results that the commensurate magnetic correlation may be tightly coupled with the superconductivity observed below T_c=1.4 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا