ﻻ يوجد ملخص باللغة العربية
We present a classification theorem for closed smooth spin 2-connected 7-manifolds M. This builds on the almost-smooth classification from the first authors thesis. The main additional ingredient is an extension of the Eells-Kuiper invariant for any closed spin 7-manifold, regardless of whether the spin characteristic class p_M in the fourth integral cohomology of M is torsion. In addition we determine the inertia group of 2-connected M - equivalently the number of oriented smooth structures on the underlying topological manifold - in terms of p_M and the torsion linking form.
The classical Kneser-Milnor theorem says that every closed oriented connected 3-dimensional manifold admits a unique connected sum decomposition into manifolds that cannot be decomposed any further. We discuss to what degree such decompositions exist
We study the set $widehat{mathcal S}_M$ of framed smoothly slice links which lie on the boundary of the complement of a 1-handlebody in a closed, simply connected, smooth 4-manifold $M$. We show that $widehat{mathcal S}_M$ is well-defined and describ
Let n>2 and let M be an orientable complete finite volume hyperbolic n-manifold with (possibly empty) geodesic boundary having Riemannian volume vol(M) and simplicial volume ||M||. A celebrated result by Gromov and Thurston states that if M has empty
We prove that any arithmetic hyperbolic $n$-manifold of simplest type can either be geodesically embedded into an arithmetic hyperbolic $(n+1)$-manifold or its universal $mathrm{mod}~2$ Abelian cover can.
For every $k geq 2$ and $n geq 2$ we construct $n$ pairwise homotopically inequivalent simply-connected, closed $4k$-dimensional manifolds, all of which are stably diffeomorphic to one another. Each of these manifolds has hyperbolic intersection form