ﻻ يوجد ملخص باللغة العربية
We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining toric roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient approach which works directly with the variables and their inverse. We show that the commutation relations and the inversion relations characterize toric border bases. We explicitly describe the first syzygy module associated to a toric border basis in terms of these relations. Finally, a new border basis algorithm for Laurent polynomials is described and a proof of its termination is given for zero-dimensional toric ideals.
Given a multi-index sequence $$sigma$$, we present a new efficient algorithm to compute generators of the linear recurrence relations between the terms of $$sigma$$. We transform this problem into an algebraic one, by identifying multi-index sequence
In modeling physical systems it is sometimes useful to construct border bases of 0-dimensional polynomial ideals which are contained in the ideal generated by a given set of polynomials. We define and construct such subideal border bases, provide som
Here we study the problem of generalizing one of the main tools of Groebner basis theory, namely the flat deformation to the leading term ideal, to the border basis setting. After showing that the straightforward approach based on the deformation to
The main topic of the paper is the construction of various explicit flat families of border bases. To begin with, we cover the punctual Hilbert scheme Hilb^mu(A^n) by border basis schemes and work out the base changes. This enables us to control flat
Let $X$ be a set of points whose coordinates are known with limited accuracy; our aim is to give a characterization of the vanishing ideal $I(X)$ independent of the data uncertainty. We present a method to compute a polynomial basis $B$ of $I(X)$ whi