ترغب بنشر مسار تعليمي؟ اضغط هنا

Near BPS Skyrmions and Restricted Harmonic Maps

166   0   0.0 ( 0 )
 نشر من قبل J. M. Speight
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف J.M. Speight




اسأل ChatGPT حول البحث

Motivated by a class of near BPS Skyrme models introduced by Adam, Sanchez-Guillen and Wereszczynski, the following variant of the harmonic map problem is introduced: a map $phi:(M,g)rightarrow (N,h)$ between Riemannian manifolds is restricted harmonic (RH) if it locally extremizes $E_2$ on its $SDiff(M)$ orbit, where $SDiff(M)$ denotes the group of volume preserving diffeomorphisms of $(M,g)$, and $E_2$ denotes the Dirichlet energy. It is conjectured that near BPS skyrmions tend to RH maps in the BPS limit. It is shown that $phi$ is RH if and only if $phi^*h$ has exact divergence, and a linear stability theory of RH maps is developed, whence it follows that all weakly conformal maps, for example, are stable RH. Examples of RH maps in every degree class $R^3to SU(2)$ and $R^2to S^2$ are constructed. It is shown that the axially symmetric BPS skyrmions on which all previous analytic studies of near BPS Skyrme models have been based, are not RH, so each such field can be deformed along $SDiff(R^3)$ to yield BPS skyrmions with lower $E_2$, casting doubt on the predictions of such studies. The problem of minimizing $E_2$ for $phi:R^kto N$ over all linear volume preserving diffeomorphisms is solved explicitly, and a deformed axially symmetric family of Skyrme fields constructed which are candidates for approximate near BPS skyrmions at low baryon number. The notion of restricted harmonicity is generalized to restricted $F$-criticality where $F$ is any functional on maps $(M,g)to (N,h)$ which is, in a precise sense, geometrically natural. The case where $F$ is a linear combination of $E_2$ and $E_4$, the usual Skyrme term, is studied in detail, and it is shown that inverse stereographic projection $R^3to S^3equiv SU(2)$ is stable restricted $F$-critical for every such $F$.

قيم البحث

اقرأ أيضاً

Starting from approximate Skyrmion solutions obtained using the rational map ansatz, improved approximate Skyrmions are constructed using scaling arguments. Although the energy improvement is small, the change of shape clarifies whether the true Skyrmions are more oblate or prolate.
By combining two different techniques to construct multi-soliton solutions of the (3+1)-dimensional Skyrme model, the generalized hedgehog and the rational map ansatz, we find multi-Skyrmion configurations in $AdS_{2}times S_{2}$. We construct Skyrmi onic multi-layered configurations such that the total Baryon charge is the product of the number of kinks along the radial $AdS_{2}$ direction and the degree of the rational map. We show that, for fixed total Baryon charge, as one increases the charge density on $partialleft( AdS_{2}times S_{2}right) $, it becomes increasingly convenient energetically to have configurations with more peaks in the radial $AdS_{2}$ direction but a lower degree of the rational map. This has a direct relation with the so-called holographic popcorn transitions in which, when the charge density is high, multi-layered configurations with low charge on each layer are favored over configurations with few layers but with higher charge on each layer. The case in which the geometry is $M_{2}times S_{2}$ can also be analyzed.
46 - R.Parthasarathy 1993
The immersion of the string world sheet, regarded as a Riemann surface, in $R^3$ and $R^4$ is described by the generalized Gauss map. When the Gauss map is harmonic or equivalently for surfaces of constant mean curvature, we obtain Hitchins self-dual equations, by using $SO(3)$ and $SO(4)$ gauge fields constructed in our earlier studies. This complements our earlier result that $hsurd g = 1$ surfaces exhibit Virasaro symmetry. The self-dual system so obtained is compared with self-dual Chern-Simons system and a generalized Liouville equation involving extrinsic geometry is obtained. The immersion in $R^n, n>4$ is described by the generalized Gauss map. It is shown that when the Gauss map is harmonic, the mean curvature of the immersed surface is constant. $SO(n)$ gauge fields are constructed from the geometry of the surface and expressed in terms of the Gauss map. It is found Hitchins self- duality relations for the gauge group $SO(2)times SO(n-2)$.
We consider Bekenstein-Hawking entropy and attractors in extremal BPS black holes of $mathcal{N}=2$, $D=4$ ungauged supergravity obtained as reduction of minimal, matter-coupled $D=5$ supergravity. They are generally expressed in terms of solutions t o an inhomogeneous system of coupled quadratic equations, named BPS system, depending on the cubic prepotential as well as on the electric-magnetic fluxes in the extremal black hole background. Focussing on homogeneous non-symmetric scalar manifolds (whose classification is known in terms of $L(q,P,dot{P})$ models), under certain assumptions on the Clifford matrices pertaining to the related cubic prepotential, we formulate and prove an invertibility condition for the gradient map of the corresponding cubic form (to have a birational inverse map which is an homogeneous polynomial of degree four), and therefore for the solutions to the BPS system to be explicitly determined, in turn providing novel, explicit expressions for the BPS black hole entropy and the related attractors as solution of the BPS attractor equations. After a general treatment, we present a number of explicit examples with $dot{P}=0$, such as $L(q,P)$, $1leqslant qleqslant 3$ and $Pgeqslant 1$,or $L(q,1)$, $4leqslant qleqslant 9$, and one model with $dot{P}=1$, namely $L(4,1,1)$. We also briefly comment on Kleinian signatures and split algebras. In particular, we provide, for the first time, the explicit form of the BPS black hole entropy and of the related BPS attractors for the infinite class of $L(1,P)$ $Pgeqslant 2$ non-symmetric models of $mathcal{N}=2$, $D=4$ supergravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا