ترغب بنشر مسار تعليمي؟ اضغط هنا

A new X-ray nova MAXI J1910-057 (= Swift J1910.2-0546) and mass-accretion inflow

37   0   0.0 ( 0 )
 نشر من قبل Satoshi Nakahira
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a long-term monitoring of a newly discovered X-ray nova, MAXI J1910-057 (= Swift J1910.2-0546), by MAXI and Swift. The new X-ray transient was first detected on 2012 May 31 by MAXI Gas Slit Camera (GSC) and Swift Burst Alert Telescope (BAT) almost simultaneously. We analyzed X-ray and UV data for 270 days since the outburst onset taken by repeated MAXI scans and Swift pointing observations. The obtained X-ray light curve for the inital 90 days is roughly represented by a fast-rise and exponential-decay profile. However, it re-brightened on the ~110 days after the onset and finally went down below both GSC and BAT detec- tion limits on the 240 day. All the X-ray energy spectra are fitted well with a model consisting of a multi-color-disk blackbody and its Comptonized hard tail. During the soft-state periods, the inner-disk radius of the best-fit model were almost constant. If the radius represents the innermost stable circular orbit of a non-spinning black hole and the soft-to-hard transitions occur at 1-4% of the Eddington luminosity, the mass of the compact object is estimated to be > 2.9Mo and the distance to be > 1.70 kpc. The inner-disk radius became larger in the hard / hard-intermediate state. This suggests that the accretion disk would be truncated. We detected an excess of the UV flux over the disk blackbody component extrapolated from the X-ray data, which can be modelled as reprocessed emission irradiated by the inner disk. We also found that the UV light curve mostly traced the X-ray curve, but a short dipping event was observed in both the UV and the X-ray bands with a 3.5-day X-ray time lag. This can be interpreted as the radial inflow of accreting matter from the outer UV region to the inner X-ray region.

قيم البحث

اقرأ أيضاً

We report on the spectral evolution of a new X-ray transient, MAXI J0556-332, observed by MAXI, Swift, and RXTE. The source was discovered on 2011 January 11 (MJD=55572) by MAXI Gas Slit Camera all-sky survey at (l,b)=(238.9deg, -25.2deg), relatively away from the Galactic plane. Swift/XRT follow-up observations identified it with a previously uncatalogued bright X-ray source and led to optical identification. For more than one year since its appearance, MAXI J0556-332 has been X-ray active, with a 2-10 keV intensity above 30 mCrab. The MAXI/GSC data revealed rapid X-ray brightening in the first five days, and a hard-to-soft transition in the meantime. For the following ~ 70 days, the 0.5-30 keV spectra, obtained by the Swift/XRT and the RXTE/PCA on an almost daily basis, show a gradual hardening, with large flux variability. These spectra are approximated by a cutoff power-law with a photon index of 0.4-1 and a high-energy exponential cutoff at 1.5-5 keV, throughout the initial 10 months where the spectral evolution is mainly represented by a change of the cutoff energy. To be more physical, the spectra are consistently explained by thermal emission from an accretion disk plus a Comptonized emission from a boundary layer around a neutron star. This supports the source identification as a neutron-star X-ray binary. The obtained spectral parameters agree with those of neutron-star X-ray binaries in the soft state, whose luminosity is higher than 1.8x10^37 erg s^-1. This suggests a source distance of >17 kpc.
Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC and the Swift XRT follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is $approx$ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm$^{-2}$ s$^{-1}$. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) them, the outburst observed with MAXI may have occurred after the quiescence of 30-40 years.
We describe the highly variable X-ray and UV emission of V458 Vul (Nova Vul 2007), observed by Swift between 1 and 422 days after outburst. Initially bright only in the UV, V458 Vul became a variable hard X-ray source due to optically thin thermal em ission at kT=0.64 keV with an X-ray band unabsorbed luminosity of 2.3x10^{34} erg s^{-1} during days 71-140. The X-ray spectrum at this time requires a low Fe abundance (0.2^{+0.3}_{-0.1} solar), consistent with a Suzaku measurement around the same time. On day 315 we find a new X-ray spectral component which can be described by a blackbody with temperature of kT=23^{+9}_{-5} eV, while the previous hard X-ray component has declined by a factor of 3.8. The spectrum of this soft X-ray component resembles those typically seen in the class of supersoft sources (SSS) which suggests that the nova ejecta were starting to clear and/or that the WD photosphere is shrinking to the point at which its thermal emission reaches into the X-ray band. We find a high degree of variability in the soft component with a flare rising by an order of magnitude in count rate in 0.2 days. In the following observations on days 342.4-383.6, the soft component was not seen, only to emerge again on day 397. The hard component continued to evolve, and we found an anticorrelation between the hard X-ray emission and the UV emission, yielding a Spearman rank probability of 97%. After day 397, the hard component was still present, was variable, and continued to fade at an extremely slow rate but could not be analysed owing to pile up contamination from the bright SSS component.
We report on the detection and follow-up multi-wavelength observations of the new X-ray transient MAXI J1807+132 with the MAXI/GSC, Swift, and ground-based optical telescopes. The source was first recognized with the MAXI/GSC on 2017 March 13. About a week later, it reached the maximum intensity ($sim$10 mCrab in 2-10 keV), and then gradually faded in $sim$10 days by more than one order of magnitude. Time-averaged Swift/XRT spectra in the decaying phase can be described by a blackbody with a relatively low temperature (0.1-0.5 keV), plus a hard power-law component with a photon index of $sim$2. These spectral properties are similar to those of neutron star low-mass X-ray binaries (LMXBs) in their dim periods. The blackbody temperature and the radius of the emission region varied in a complex manner as the source became dimmer. The source was detected in the optical wavelength on March 27-31 as well. The optical flux decreased monotonically as the X-ray flux decayed. The correlation between the X-ray and optical fluxes is found to be consistent with those of known neutron star LMXBs, supporting the idea that the source is likely to be a transient neutron star LMXB.
Context. The disc instability model (DIM) successfully explains why many accreting compact binary systems exhibit outbursts, during which their luminosity increases by orders of magnitude. The DIM correctly predicts which systems should be transient and works regardless of whether the accretor is a black hole, a neutron star or a white dwarf. However, it has been known for some time that the outbursts of X-ray binaries (which contain neutron-star or black-hole accretors) exhibit hysteresis in the X-ray hardness-intensity diagram (HID). More recently, it has been shown that the outbursts of accreting white dwarfs also show hysteresis, but in a diagram combining optical, EUV and X-ray fluxes. Aims. We examine here the nature of the hysteresis observed in cataclysmic variables and low-mass X-ray binaries. Methods. We use the Hameury et al. (1998) code for modelling dwarf nova outbursts, and construct the hardness intensity diagram as predicted by the disc instability model. Results. We show explicitly that the standard DIM - modified only to account for disc truncation - can explain the hysteresis observed in accreting white dwarfs, but cannot explain that observed in X-ray binaries. Conclusions. The spectral evidence for the existence of different accretion regimes / components (disc, corona, jets, etc.) should be based only on wavebands that are specific to the innermost parts of the discs, i.e. EUV and X-rays, which is a difficult task because of interstellar absorption. The existing data, however, indicate that an EUV/X-ray hysteresis is present in SS Cyg.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا