ﻻ يوجد ملخص باللغة العربية
The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than $kTlog 2$. We discuss Landauers principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Arakis perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauers bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared.
In this paper, we present a Hopf algebra description of a bosonic quantum model, using the elementary combinatorial elements of Bell and Stirling numbers. Our objective in doing this is as follows. Recent studies have revealed that perturbative quant
In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of t
We consider the geometrization of quantum mechanics. We then focus on the pull-back of the Fubini-Study metric tensor field from the projective Hibert space to the orbits of the local unitary groups. An inner product on these tensor fields allows us
The existing relation between the tomographic description of quantum states and the convolution algebra of certain discrete groupoids represented on Hilbert spaces will be discussed. The realizations of groupoid algebras based on qudit, photon-number
We study driven finite quantum systems in contact with a thermal reservoir in the regime in which the system changes slowly in comparison to the equilibration time. The associated isothermal adiabatic theorem allows us to control the full statistics