ترغب بنشر مسار تعليمي؟ اضغط هنا

The SOFIA Observatory at the Start of Routine Science Operations : Mission capabilities and performance

178   0   0.0 ( 0 )
 نشر من قبل Pasquale Temi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities are viewed as a first comprehensive assessment of the Observatorys performance and are used to guide future development activities, as well as to identify additional Observatory upgrades. Pointing stability was evaluated, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an active mass damper system installed on the telescope. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have also been performed. Additional tests targeted basic Observatory capabilities and requirements, including pointing accuracy, chopper evaluation and imager sensitivity. This paper reports on the data collected during these flights and presents current SOFIA Observatory performance and characterization.



قيم البحث

اقرأ أيضاً

105 - Yukikatsu Terada 2021
XRISM is an X-ray astronomical mission by the JAXA, NASA, ESA and other international participants, that is planned for launch in 2022 (Japanese fiscal year), to quickly restore high-resolution X-ray spectroscopy of astrophysical objects. To enhance the scientific outputs of the mission, the Science Operations Team (SOT) is structured independently from the instrument teams and the Mission Operations Team. The responsibilities of the SOT are divided into four categories: 1) guest observer program and data distributions, 2) distribution of analysis software and the calibration database, 3) guest observer support activities, and 4) performance verification and optimization activities. As the first step, lessons on the science operations learned from past Japanese X-ray missions are reviewed, and 15 kinds of lessons are identified. Among them, a) the importance of early preparation of the operations from the ground stage, b) construction of an independent team for science operations separate from the instrument development, and c) operations with well-defined duties by appointed members are recognized as key lessons. Then, the team structure and the task division between the mission and science operations are defined; the tasks are shared among Japan, US, and Europe and are performed by three centers, the SOC, SDC, and ESAC, respectively. The SOC is designed to perform tasks close to the spacecraft operations, such as spacecraft planning, quick-look health checks, pre-pipeline processing, etc., and the SDC covers tasks regarding data calibration processing, maintenance of analysis tools, etc. The data-archive and user-support activities are covered both by the SOC and SDC. Finally, the science-operations tasks and tools are defined and prepared before launch.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7-m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths fro m 0.3 micron to 1.6 mm, SOFIA operates above 99.8 % of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center DLR, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This article provides an overview of the observatory and its early performance.
An updated Science Vision for the SOFIA project is presented, including an overview of the characteristics and capabilities of the observatory and first generation instruments. A primary focus is placed on four science themes: The Formation of Stars and Planets, The Interstellar Medium of the Milky Way, Galaxies and the Galactic Center and Planetary Science.
The Astrophysical Multimessenger Observatory Network (AMON) has been built with the purpose of enabling near real-time coincidence searches using data from leading multimessenger observatories and astronomical facilities. Its mission is to evoke disc overy of multimessenger astrophysical sources, exploit these sources for purposes of astrophysics and fundamental physics, and explore multimessenger datasets for evidence of multimessenger source population AMON aims to promote the advancement of multimessenger astrophysics by allowing its participants to study the most energetic phenomena in the universe and to help answer some of the outstanding enigmas in astrophysics, fundamental physics, and cosmology. The main strength of AMON is its ability to combine and analyze sub-threshold data from different facilities. Such data cannot generally be used stand-alone to identify astrophysical sources. The analyses algorithms used by AMON can identify statistically significant coincidence candidates of multimessenger events, leading to the distribution of AMON alerts used by partner observatories for real-time follow-up that may identify and, potentially, confirm the reality of the multimessenger association. We present the science motivation, partner observatories, implementation and summary of the current status of the AMON project.
252 - J. H. J. de Bruijne 2012
Gaia is the next astrometry mission of the European Space Agency (ESA), following up on the success of the Hipparcos mission. With a focal plane containing 106 CCD detectors, Gaia will survey the entire sky and repeatedly observe the brightest 1,000 million objects, down to 20th magnitude, during its 5-year lifetime. Gaias science data comprises absolute astrometry, broad-band photometry, and low-resolution spectro-photometry. Spectroscopic data with a resolving power of 11,500 will be obtained for the brightest 150 million sources, down to 17th magnitude. The thermo-mechanical stability of the spacecraft, combined with the selection of the L2 Lissajous point of the Sun-Earth/Moon system for operations, allows stellar parallaxes to be measured with standard errors less than 10 micro-arcsecond (muas) for stars brighter than 12th magnitude, 25 muas for stars at 15th magnitude, and 300 muas at magnitude 20. Photometric standard errors are in the milli-magnitude regime. The spectroscopic data allows the measurement of radial velocities with errors of 15 km/s at magnitude 17. Gaias primary science goal is to unravel the kinematical, dynamical, and chemical structure and evolution of the Milky Way. In addition, Gaias data will touch many other areas of science, e.g., stellar physics, solar-system bodies, fundamental physics, and exo-planets. The Gaia spacecraft is currently in the qualification and production phase. With a launch in 2013, the final catalogue is expected in 2021. The science community in Europe, organised in the Data Processing and Analysis Consortium (DPAC), is responsible for the processing of the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا