ﻻ يوجد ملخص باللغة العربية
We extend to orbifolds the quasimap theory of arXiv:0908.4446 and arXiv:1106.3724, as well as the genus zero wall-crossing results from arXiv:1304.7056 and arXiv:1401.7417. As a consequence, we obtain generalizations of orbifold mirror theorems, in particular, of the mirror theorem for toric orbifolds recently proved independently by Coates, Corti, Iritani, and Tseng (arXiv:1310.4163).
We construct relative moduli spaces of semistable pairs on a family of projective Deligne-Mumford stacks. We define moduli stacks of stable orbifold Pandharipande-Thomas pairs on stacks of expanded degenerations and pairs, and then show they are sepa
Let $k$ be a field and $X/k$ be a smooth quasiprojective orbifold. Let $Xto underline{X}$ be its coarse moduli space. In this paper we study the Brauer group of $X$ and compare it with the Brauer group of the smooth locus of $underline{X}$.
We study the cup product on the Hochschild cohomology of the stack quotient [X/G] of a smooth quasi-projective variety X by a finite group G. More specifically, we construct a G-equivariant sheaf of graded algebras on X whose G-invariant global secti
We introduce the concept of directed orbifold, namely triples (X, V, D) formed by a directed algebraic or analytic variety (X, V), and a ramification divisor D, where V is a coherent subsheaf of the tangent bundle T X. In this context, we introduce a
We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equival