ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlocal and Quantum Tunneling Contributions to Harmonic Generation in Nanostructures: Electron Cloud Screening Effects

58   0   0.0 ( 0 )
 نشر من قبل Michael Scalora
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our theoretical examination of second and third harmonic generation from metal-based nanostructures predicts that nonlocal and quantum tunneling phenomena can significantly exceed expectations based solely on local, classical electromagnetism. Mindful that the diameter of typical transition metal atoms is approximately 3{AA}, we adopt a theoretical model that treats nanometer-size features and/or sub-nanometer size gaps or spacers by taking into account: (i) the limits imposed by atomic size to fulfill the requirements of continuum electrodynamics; (ii) spillage of the nearly-free electron cloud into the surrounding vacuum; and (iii) the increased probability of quantum tunneling as objects are placed in close proximity. Our approach also includes the treatment of bound charges, which add crucial, dynamical components to the dielectric constant that are neglected in the conventional hydrodynamic model, especially in the visible and UV ranges, where interband transitions are important. The model attempts to inject into the classical electrodynamic picture a simple, perhaps more realistic description of the metal surface by incorporating a thin patina of free-electrons that screens an internal, polarizable medium.


قيم البحث

اقرأ أيضاً

We present a new theoretical approach to the study of second and third harmonic generation from metallic nanostructures and nanocavities filled with a nonlinear material, in the ultrashort pulse regime. We model the metal as a two-component medium, u sing the hydrodynamic model to describe free electrons, and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and to harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We study the effects of incident TE- and TM-polarized fields and show that a simple re-examination of the basic equations reveals additional exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.
We report comparative experimental and theoretical studies of second and third harmonic generation from a 20nm-thick indium tin oxide layer in proximity of the epsilon-near-zero condition. Using a tunable OPA laser we record both spectral and angular dependence of the generated harmonic signals close to this particular point. In addition to the enhancement of the second harmonic efficiency close to the epsilon-near-zero wavelength, at oblique incidence third harmonic generation displays unusual behavior, predicted but not observed before. We implement a comprehensive, first-principles hydrodynamic approach able to simulate our experimental conditions. The model is unique, flexible, and able to capture all major physical mechanisms that drive the electrodynamic behavior of conductive oxide layers: nonlocal effects, which blueshift the epsilon-near-zero resonance by tens of nanometers; plasma frequency redshift due to variations of the effective mass of hot carriers; charge density distribution inside the layer, which determines nonlinear surface and magnetic interactions; and the nonlinearity of the background medium triggered by bound electrons. We show that by taking these contributions into account our theoretical predictions are in very good qualitative and quantitative agreement with our experimental results. We show that by taking these contributions into account our theoretical predictions are in very good qualitative and quantitative agreement with our experimental results. We expect that our results can be extended to other geometries where ENZ nonlinearity plays an important role.
The optical response of a coupled nanowire dimer is studied using a fully quantum mechanical approach. The translational invariance of the system allows to apply the time--dependent density functional theory for the plasmonic dimer with the largest s ize considered so far in quantum calculations. Detailed comparisons with results from classical electromagnetic calculations based on local and non local hydrodynamic response, as well as with results of the recently developed quantum corrected model is performed. We show that electron tunneling and dynamical screening are the major nonlocal quantum effects determining the plasmonic modes and field enhancement in the system. Account for the electron tunneling at small junction sizes allows semi-quantitative description of quantum results within classical framework. We also discuss the shortcomings of classical treatments using non-local dielectric permittivities based on hydrodynamic models. Finally, the implications of the actual position of the screening charge density for the plasmon ruler applications are demonstrated.
The interaction of light with metallic nanostructures produces a collective excitation of electrons at the metal surface, also known as surface plasmons. These collective excitations lead to resonances that enable the confinement of light in deep-sub wavelength regions, thereby leading to large near-field enhancements. The simulation of plasmon resonances presents notable challenges. From the modeling perspective, the realistic behavior of conduction-band electrons in metallic nanostructures is not captured by Maxwells equations, thus requiring additional modeling. From the simulation perspective, the disparity in length scales stemming from the extreme field localization demands efficient and accurate numerical methods. In this paper, we develop the hybridizable discontinuous Galerkin (HDG) method to solve Maxwells equations augmented with the hydrodynamic model for the conduction-band electrons in noble metals. This method enables the efficient simulation of plasmonic nanostructures while accounting for the nonlocal interactions between electrons and the incident light. We introduce a novel postprocessing scheme to recover superconvergent solutions and demonstrate the convergence of the proposed HDG method for the simulation of a 2D gold nanowire and a 3D periodic annular nanogap structure. The results of the hydrodynamic model are compared to those of a simplified local response model, showing that differences between them can be significant at the nanoscale.
High-harmonic generation is one of the most fundamental processes in strong laser-field physics that has led to countless achievements in atomic physics and beyond. However, a rigorous quantum electrodynamical picture of the process has never been re ported. Here, we prove rigorously and demonstrate experimentally that the quantum state of the driving laser field, as well as that of harmonics, is coherent. Projecting this state on its part corresponding to harmonic generation, it becomes a superposition of a state, amplitude-shifted due to the quantum nature of light, and the initial state of the laser. This superposition interpolates between a Schr{o}dinger kitten, and a genuine Schr{o}dinger cat state. This work opens new paths for ground-breaking investigations in strong laser-field physics and quantum technology. We dedicate the work to the memory of Roy J. Glauber, the inventor of coherent states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا