ﻻ يوجد ملخص باللغة العربية
We present specific-heat and neutron-scattering results for the emph{S}=1/2 quantum antiferromagnet (dimethylammonium)(3,5-dimethylpyridinium)CuBr$_4$. The material orders magnetically at emph{T}$_N$=1.99(2),K, and magnetic excitations are accompanied by an energy gap of 0.30(2) meV due to spin anisotropy. The system is best described as coupled two-leg spin-1/2 ladders with the leg exchange $J_{rm leg}$=0.60(2)~meV, rung exchange $J_{rm rung}$=0.64(9)~meV, interladder exchange $J_{rm int}$=0.19(2)~meV, and an interaction-anisotropy parameter $lambda$=0.93(2), according to inelastic neutron-scattering measurements. In contrast to most spin ladders reported to date, the material is a rare example in which the interladder coupling is very near the critical value required to drive the system to a Neel-ordered phase without an assistance of a magnetic field.
Polarized inelastic neutron scattering experiments recently identified the amplitude (Higgs) mode in C$_9$H$_{18}$N$_2$CuBr$_4$, a two-dimensional near-quantum-critical spin-1/2 two-leg ladder compound, which exhibits a weak easy-axis exchange anisot
Magnetic excitations in the spin-ladder material (C$_5$H$_{12}$N)$_2$CuBr$_4$ [BPCB] are probed by high-resolution multi-frequency electron spin resonance (ESR) spectroscopy. Our experiments provide a direct evidence for a biaxial anisotropy ($sim 5%
The $S=1/2$ spin ladder compound (C$_5$H$_{12}$N)$_2$CuBr$_4$ (BPCB) is studied by means of high-resolution inelastic neutron scattering. In agreement with previous studies we find a band of triplet excitations with a spin gap of $sim0.8$~meV and a b
We present experiments on the magnetic field-dependent thermal transport in the spin-1/2 ladder system (C$_5$H$_{12}$N)$_2$CuBr$_4$. The thermal conductivity $kappa(B)$ is only weakly affected by the field-induced transitions between the gapless Lutt
Inelastic neutron scattering is used to measure spin excitations in fully deuterated single crystal samples of the strong-leg antiferromagnetic S=1/2 spin ladder compound (C$_7$H$_{10}$N)$_2$CuBr$_4$. Sharp resolution-limited magnons are observed acr