ترغب بنشر مسار تعليمي؟ اضغط هنا

On the oscillator realization of conformal U(2,2) quantum particles and their particle-hole coherent states

233   0   0.0 ( 0 )
 نشر من قبل Manuel Calixto
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revise the unireps. of $U(2,2)$ describing conformal particles with continuous mass spectrum from a many-body perspective, which shows massive conformal particles as compounds of two correlated massless particles. The statistics of the compound (boson/fermion) depends on the helicity $h$ of the massless components (integer/half-integer). Coherent states (CS) of particle-hole pairs (excitons) are also explicitly constructed as the exponential action of exciton (non-canonical) creation operators on the ground state of unpaired particles. These CS are labeled by points $Z$ ($2times 2$ complex matrices) on the Cartan-Bergman domain $mathbb D_4=U(2,2)/U(2)^2$, and constitute a generalized (matrix) version of Perelomov $U(1,1)$ coherent states labeled by points $z$ on the unit disk $mathbb D_1=U(1,1)/U(1)^2$. Firstly we follow a geometric approach to the construction of CS, orthonormal basis, $U(2,2)$ generators and their matrix elements and symbols in the reproducing kernel Hilbert space $mathcal H_lambda(mathbb D_4)$ of analytic square-integrable holomorphic functions on $mathbb D_4$, which carries a unitary irreducible representation of $U(2,2)$ with index $lambdainmathbb N$ (the conformal or scale dimension). Then we introduce a many-body representation of the previous construction through an oscillator realization of the $U(2,2)$ Lie algebra generators in terms of eight boson operators with constraints. This particle picture allows us for a physical interpretation of our abstract mathematical construction in the many-body jargon. In particular, the index $lambda$ is related to the number $2(lambda-2)$ of unpaired quanta and to the helicity $h=(lambda-2)/2$ of each massless particle forming the massive compound.



قيم البحث

اقرأ أيضاً

Bilayer quantum Hall (BLQH) systems, which underlie a $U(4)$ symmetry, display unique quantum coherence effects. We study coherent states (CS) on the complex Grassmannian $mathbb G_2^4=U(4)/U(2)^2$, orthonormal basis, $U(4)$ generators and their matr ix elements in the reproducing kernel Hilbert space $mathcal H_lambda(mathbb G_2^4)$ of analytic square-integrable holomorphic functions on $mathbb G_2^4$, which carries a unitary irreducible representation of $U(4)$ with index $lambdainmathbb N$. A many-body representation of the previous construction is introduced through an oscillator realization of the $U(4)$ Lie algebra generators in terms of eight boson operators. This particle picture allows us for a physical interpretation of our abstract mathematical construction in the BLQH jargon. In particular, the index $lambda$ is related to the number of flux quanta bound to a bi-fermion in the composite fermion picture of Jain for fractions of the filling factor $ u=2$. The simpler, and better known, case of spin-$s$ CS on the Riemann-Bloch sphere $mathbb{S}^2=U(2)/U(1)^2$ is also treated in parallel, of which Grassmannian $mathbb G_2^4$-CS can be regarded as a generalized (matrix) version.
We give a quantum mechanical description of accelerated relativistic particles in the framework of Coherent States (CS) of the (3+1)-dimensional conformal group SU(2,2), with the role of accelerations played by special conformal transformations and w ith the role of (proper) time translations played by dilations. The accelerated ground state $tildephi_0$ of first quantization is a CS of the conformal group. We compute the distribution function giving the occupation number of each energy level in $tildephi_0$ and, with it, the partition function Z, mean energy E and entropy S, which resemble that of an Einstein Solid. An effective temperature T can be assigned to this accelerated ensemble through the thermodynamic expression dE/dS, which leads to a (non linear) relation between acceleration and temperature different from Unruhs (linear) formula. Then we construct the corresponding conformal-SU(2,2)-invariant second quantized theory and its spontaneous breakdown when selecting Poincare-invariant degenerated theta-vacua (namely, coherent states of conformal zero modes). Special conformal transformations (accelerations) destabilize the Poincare vacuum and make it to radiate.
Nonrelativistic conformal groups, indexed by l=N/2, are analyzed. Under the assumption that the mass parametrizing the central extension is nonvanishing the coadjoint orbits are classified and described in terms of convenient variables. It is shown t hat the corresponding dynamical system describes, within Ostrogradski framework, the nonrelativistic particle obeying (N+1)-th order equation of motion. As a special case, the Schroedinger group and the standard Newton equations are obtained for N=1 (l=1/2).
We construct various systems of coherent states (SCS) on the $O(D)$-equivariant fuzzy spheres $S^d_Lambda$ ($d=1,2$, $D=d!+!1$) constructed in [G. Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451] and study their localizations in configuration space as well as angular momentum space. These localizations are best expressed through the $O(D)$-invariant square space and angular momentum uncertainties $(Deltaboldsymbol{x})^2,(Deltaboldsymbol{L})^2$ in the ambient Euclidean space $mathbb{R}^D$. We also determine general bounds (e.g. uncertainty relations from commutation relations) for $(Deltaboldsymbol{x})^2,(Deltaboldsymbol{L})^2$, and partly investigate which SCS may saturate these bounds. In particular, we determine $O(D)$-equivariant systems of optimally localized coherent states, which are the closest quantum states to the classical states (i.e. points) of $S^d$. We compare the results with their analogs on commutative $S^d$. We also show that on $S^2_Lambda$ our optimally localized states are better localized than those on the Madore-Hoppe fuzzy sphere with the same cutoff $Lambda$.
59 - Georg Junker 2021
The three-dimensional Klein-Gordon oscillator is shown to exhibit an algebraic structure known from supersymmetric quantum mechanics. The supersymmetry is found to be unbroken with a vanishing Witten index, and it is utilized to derive the spectral p roperties of the Klein-Gordon oscillator, which is closely related to that of the non-relativistic harmonic oscillator in three dimensions. Supersymmetry also enables us to derive a closed-form expression for the energy-dependent Greens function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا