ﻻ يوجد ملخص باللغة العربية
Probability logic has contributed to significant developments in belief types for game-theoretical economics. We present a new probability logic for Harsanyi Type spaces, show its completeness, and prove both a de-nesting property and a unique extension theorem. We then prove that multi-agent interactive epistemology has greater complexity than its single-agent counterpart by showing that if the probability indices of the belief language are restricted to a finite set of rationals and there are finitely many propositional letters, then the canonical space for probabilistic beliefs with one agent is finite while the canonical one with at least two agents has the cardinality of the continuum. Finally, we generalize the three notions of definability in multimodal logics to logics of probabilistic belief and knowledge, namely implicit definability, reducibility, and explicit definability. We find that S5-knowledge can be implicitly defined by probabilistic belief but not reduced to it and hence is not explicitly definable by probabilistic belief.
We prove that $IHS_A$, the theory of infinite dimensional Hilbert spaces equipped with a generic automorphism, is $aleph_0$-stable up to perturbation of the automorphism, and admits prime models up to perturbation over any set. Similarly, $APr_A$, th
We show that numerous distinctive concepts of constructive mathematics arise automatically from an antithesis translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented sub
We introduce a class of neighbourhood frames for graded modal logic embedding Kripke frames into neighbourhood frames. This class of neighbourhood frames is shown to be first-order definable but not modally definable. We also obtain a new definition
We describe an infinitary logic for metric structures which is analogous to $L_{omega_1, omega}$. We show that this logic is capable of expressing several concepts from analysis that cannot be expressed in finitary continuous logic. Using topological
As defined by Dunn, Moss, and Wang, an universal test set in an ortholattice $L$ is a subset $T$ such that each term takes value $1$, only, if it does so under all substitutions from $T$. Generalizing their result for ortholattices of subspaces of fi