ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic Bounds for the Size of Hom$(A,{rm GL}_n(q))$

121   0   0.0 ( 0 )
 نشر من قبل Michael Bate
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Fix an arbitrary finite group $A$ of order $a$, and let $X(n,q)$ denote the set of homomorphisms from $A$ to the finite general linear group ${rm GL}_n(q)$. The size of $X(n,q)$ is a polynomial in $q$. In this note it is shown that generically this polynomial has degree $n^2(1-a^{-1}) - epsilon_r$ and leading coefficient $m_r$, where $epsilon_r$ and $m_r$ are constants depending only on $r := n mod a$. We also present an algorithm for explicitly determining these constants.



قيم البحث

اقرأ أيضاً

348 - Yiwen Ding 2015
We study some closed rigid subspaces of the eigenvarieties, constructed by using the Jacquet-Emerton functor for parabolic non-Borel subgroups. As an application (and motivation), we prove some new results on Breuils locally analytic socle conjecture for $mathrm{GL}_n(mathbb{Q}_p)$.
103 - Yiwen Ding 2018
Let $L$ be a finite extension of $mathbb{Q}_p$, and $rho_L$ be an $n$-dimensional semi-stable non crystalline $p$-adic representation of $mathrm{Gal}_L$ with full monodromy rank. Via a study of Breuils (simple) $mathcal{L}$-invariants, we attach to $ rho_L$ a locally $mathbb{Q}_p$-analytic representation $Pi(rho_L)$ of $mathrm{GL}_n(L)$, which carries the exact information of the Fontaine-Mazur simple $mathcal{L}$-invariants of $rho_L$. When $rho_L$ comes from an automorphic representation of $G(mathbb{A}_{F^+})$ (for a unitary group $G$ over a totally real filed $F^+$ which is compact at infinite places and $mathrm{GL}_n$ at $p$-adic places), we prove under mild hypothesis that $Pi(rho_L)$ is a subrerpresentation of the associated Hecke-isotypic subspaces of the Banach spaces of $p$-adic automorphic forms on $G(mathbb{A}_{F^+})$. In other words, we prove the equality of Breuils simple $mathcal{L}$-invariants and Fontaine-Mazur simple $mathcal{L}$-invariants.
Let $p$ be a prime number and $K$ a finite extension of $mathbb{Q}_p$. We state conjectures on the smooth representations of $mathrm{GL}_n(K)$ that occur in spaces of mod $p$ automorphic forms (for compact unitary groups). In particular, when $K$ is unramified, we conjecture that they are of finite length and predict their internal structure (extensions, form of subquotients) from the structure of a certain algebraic representation of $mathrm{GL}_n$. When $n=2$ and $K$ is unramified, we prove several cases of our conjectures, including new finite length results.
180 - Chun-Ju Lai , Li Luo 2015
In 1990 Beilinson, Lusztig and MacPherson provided a geometric realization of modified quantum $mathfrak{gl}_n$ and its canonical basis. A key step of their work is a construction of a monomial basis. Recently, Du and Fu provided an algebraic constru ction of the canonical basis for modified quantum affine $mathfrak{gl}_n$, which among other results used an earlier construction of monomial bases using Ringel-Hall algebra of the cyclic quiver. In this paper, we give an elementary algebraic construction of a monomial basis for affine Schur algebras and modified quantum affine $mathfrak{gl}_n$.
Building on earlier papers of several authors, we establish that there exists a universal constant $c > 0$ such that the minimal base size $b(G)$ of a primitive permutation group $G$ of degree $n$ satisfies $log |G| / log n leq b(G) < 45 (log |G| / l og n) + c$. This finishes the proof of Pybers base size conjecture. An ingredient of the proof is that for the distinguishing number $d(G)$ (in the sense of Albertson and Collins) of a transitive permutation group $G$ of degree $n > 1$ we have the estimates $sqrt[n]{|G|} < d(G) leq 48 sqrt[n]{|G|}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا