ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar Wind Electron Strahls Associated with a High-Latitude CME: emph{Ulysses} Observations

45   0   0.0 ( 0 )
 نشر من قبل Marian Lazar
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Counterstreaming beams of electrons are ubiquitous in coronal mass ejections (CMEs) - although their existence is not unanimously accepted as a necessary and/or sufficient signature of these events. We continue the investigations of a high-latitude CME registered by the emph{Ulysses} spacecraft on January 18,--,19, 2002 (Dumitrache, Popescu, and Oncica, Solar Phys. {bf 272}, 137, 2011), by surveying the solar wind electron distributions associated with this event. The temporal-evolution of the pitch-angle distributions reveal populations of electrons distinguishable through their anisotropy, with clear signatures of i) electron strahls, ii) counter-streaming in the magnetic clouds and their precursors, and iii) unidirectional in the fast wind preceding the CME. The analysis of the counter-streams inside the CME allows us to elucidate the complexity of the magnetic-cloud structures embeded in the CME and to refine the borders of the event. Identifying such strahls in CMEs, which preserve properties of the low $beta < 1$ coronal plasma, gives more support to the hypothesis that these populations are remnants of the hot coronal electrons that escape from the electrostatic potential of the Sun into the heliosphere.

قيم البحث

اقرأ أيضاً

We present first results of a solar radio event observed with the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) at metric wavelengths. We examine a complex event consisting of multiple radio sources/bursts associated with a fast cor onal mass ejection (CME) and an M2.1 GOES soft X-ray flare from 2015 September 20. Images of 9--s cadence are used to analyze the event over a 120-minute period, and solar emission is observed out to a distance of $approx3.5,R_odot$, with an instantaneous bandwidth covering 22~MHz within the frequency range of 40--70~MHz. We present our results from the investigation of the radio event, focusing particularly on one burst source that exhibits outward motion, which we classify as a moving type IV burst. We image the event at multiple frequencies and use the source centroids to obtain the velocity for the outward motion. Spatial and temporal comparison with observations of the CME in white light from the LASCO(C2) coronagraph, indicates an association of the outward motion with the core of the CME. By performing graduated-cylindrical-shell (GCS) reconstruction of the CME, we constrain the density in the volume. The electron plasma frequency obtained from the density estimates do not allow us to completely dismiss plasma emission as the underlying mechanism. However, based on source height and smoothness of the emission in frequency and time, we argue that gyrosynchrotron is the more plausible mechanism. We use gyrosynchrotron spectral fitting techniques to estimate the evolving physical conditions during the outward motion of this burst source.
One of the key challenges in solar and heliospheric physics is to understand the acceleration of the solar wind. As a super-sonic, super-Alfvenic plasma flow, the solar wind carries mass, momentum, energy, and angular momentum from the Sun into inter planetary space. We present a framework based on two-fluid magnetohydrodynamics to estimate the flux of these quantities based on spacecraft data independent of the heliocentric distance of the location of measurement. Applying this method to the Ulysses dataset allows us to study the dependence of these fluxes on heliolatitude and solar cycle. The use of scaling laws provides us with the heliolatitudinal dependence and the solar-cycle dependence of the scaled Alfvenic and sonic Mach numbers as well as the Alfven and sonic critical radii. Moreover, we estimate the distance at which the local thermal pressure and the local energy density in the magnetic field balance. These results serve as predictions for observations with Parker Solar Probe, which currently explores the very inner heliosphere, and Solar Orbiter, which will measure the solar wind outside the plane of the ecliptic in the inner heliosphere during the course of the mission.
The forces acting on solar Coronal Mass Ejections (CMEs) in the interplanetary medium have been evaluated so far in terms of an empirical drag coefficient $C_{rm D} sim 1$ that quantifies the role of the aerodynamic drag experienced by a typical CME due to its interaction with the ambient solar wind. We use a microphysical prescription for viscosity in the turbulent solar wind to obtain an analytical model for the drag coefficient $C_{rm D}$. This is the first physical characterization of the aerodynamic drag experienced by CMEs. We use this physically motivated prescription for $C_{rm D}$ in a simple, 1D model for CME propagation to obtain velocity profiles and travel times that agree well with observations of deceleration experienced by fast CMEs.
We investigate the physical conditions of the sources of two metric Type-II bursts associated with CME expansions with the aim of verifying the relationship between the shocks and the CMEs, comparing the heights of the radio sources and the heights o f the EUV waves associated with the CMEs. The heights of the EUV waves associated with the events were determined in relation to the wave fronts. The heights of the shocks were estimated by applying two different density models to the frequencies of the Type-II emissions and compared with the heights of the EUV waves. For the 13 June 2010 event, with band-splitting, the shock speed was estimated from the frequency drifts of the upper and lower branches of the harmonic lane, taking into account the H/F frequency ratio fH/fF = 2. Exponential fits on the intensity maxima of the branches revealed to be more consistent with the morphology of the spectrum of this event. For the 6 June 2012 event, with no band-splitting and with a clear fundamental lane on the spectrum, the shock speed was estimated directly from the frequency drift of the fundamental emission, determined by linear fit on the intensity maxima of the lane. For each event, the most appropriate density model was adopted to estimate the physical parameters of the radio source. The 13 June 2010 event presented a shock speed of 664-719 km/s, consistent with the average speed of the EUV wave fronts of 609 km/s. The 6 June 2012 event was related to a shock of speed of 211-461 km/s, also consistent with the average speed of the EUV wave fronts of 418 km/s. For both events, the heights of the EUV wave revealed to be compatible with the heights of the radio source, assuming a radial propagation of the shock.
We perform the first kinematic analysis of a CME observed by both imaging and in situ instruments on board STEREO, namely the SECCHI, PLASTIC, and IMPACT experiments. Launched on 2008 February 4, the CME is tracked continuously from initiation to 1 A U using the SECCHI imagers on both STEREO spacecraft, and is then detected by the PLASTIC and IMPACT particle and field detectors on board STEREO-B. The CME is also detected in situ by ACE and SOHO/CELIAS at Earths L1 Lagrangian point. The CME hits STEREO-B, ACE, and SOHO on 2008 February 7, but misses STEREO-A entirely. This event provides a good example of just how different the same event can look when viewed from different perspectives. We also demonstrate many ways in which the comprehensive and continuous coverage of this CME by STEREO improves confidence in our assessment of its kinematic behavior, with potential ramifications for space weather forecasting. The observations provide several lines of evidence in favor of the observable part of the CME being narrow in angular extent, a determination crucial for deciding how best to convert observed CME elongation angles from Sun-center to actual Sun-center distances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا