ترغب بنشر مسار تعليمي؟ اضغط هنا

The observable structure of persistence modules

48   0   0.0 ( 0 )
 نشر من قبل Frederic Chazal
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In persistent topology, q-tame modules appear as a natural and large class of persistence modules indexed over the real line for which a persistence diagram is definable. However, unlike persistence modules indexed over a totally ordered finite set or the natural numbers, such diagrams do not provide a complete invariant of q-tame modules. The purpose of this paper is to show that the category of persistence modules can be adjusted to overcome this issue. We introduce the observable category of persistence modules: a localization of the usual category, in which the classical properties of q-tame modules still hold but where the persistence diagram is a complete isomorphism invariant and all q-tame modules admit an interval decomposition.

قيم البحث

اقرأ أيضاً

We show that a persistence module (for a totally ordered indexing set) consisting of finite-dimensional vector spaces is a direct sum of interval modules. The result extends to persistence modules with the descending chain condition on images and kernels.
110 - Frederic Chazal 2012
We give a self-contained treatment of the theory of persistence modules indexed over the real line. We give new proofs of the standard results. Persistence diagrams are constructed using measure theory. Linear algebra lemmas are simplified using a ne w notation for calculations on quiver representations. We show that the stringent finiteness conditions required by traditional methods are not necessary to prove the existence and stability of the persistence diagram. We introduce weaker hypotheses for taming persistence modules, which are met in practice and are strong enough for the theory still to work. The constructions and proofs enabled by our framework are, we claim, cleaner and simpler.
We develop some aspects of the homological algebra of persistence modules, in both the one-parameter and multi-parameter settings, considered as either sheaves or graded modules. The two theories are different. We consider the graded module and sheaf tensor product and Hom bifunctors as well as their derived functors, Tor and Ext, and give explicit computations for interval modules. We give a classification of injective, projective, and flat interval modules. We state Kunneth theorems and universal coefficient theorems for the homology and cohomology of chain complexes of persistence modules in both the sheaf and graded modules settings and show how these theorems can be applied to persistence modules arising from filtered cell complexes. We also give a Gabriel-Popescu theorem for persistence modules. Finally, we examine categories enriched over persistence modules. We show that the graded module point of view produces a closed symmetric monoidal category that is enriched over itself.
We relate the machinery of persistence modules to the Legendrian contact homology theory and to Poisson bracket invariants, and use it to show the existence of connecting trajectories of contact and symplectic Hamiltonian flows.
110 - Tamal K. Dey , Cheng Xin 2019
The classical persistence algorithm virtually computes the unique decomposition of a persistence module implicitly given by an input simplicial filtration. Based on matrix reduction, this algorithm is a cornerstone of the emergent area of topological data analysis. Its input is a simplicial filtration defined over the integers $mathbb{Z}$ giving rise to a $1$-parameter persistence module. It has been recognized that multi-parameter version of persistence modules given by simplicial filtrations over $d$-dimensional integer grids $mathbb{Z}^d$ is equally or perhaps more important in data science applications. However, in the multi-parameter setting, one of the main challenges is that topological summaries based on algebraic structure such as decompositions and bottleneck distances cannot be as efficiently computed as in the $1$-parameter case because there is no known extension of the persistence algorithm to multi-parameter persistence modules. We present an efficient algorithm to compute the unique decomposition of a finitely presented persistence module $M$ defined over the multiparameter $mathbb{Z}^d$.The algorithm first assumes that the module is presented with a set of $N$ generators and relations that are emph{distinctly graded}. Based on a generalized matrix reduction technique it runs in $O(N^{2omega+1})$ time where $omega<2.373$ is the exponent for matrix multiplication. This is much better than the well known algorithm called Meataxe which runs in $tilde{O}(N^{6(d+1)})$ time on such an input. In practice, persistence modules are usually induced by simplicial filtrations. With such an input consisting of $n$ simplices, our algorithm runs in $O(n^{2omega+1})$ time for $d=2$ and in $O(n^{d(2omega + 1)})$ time for $d>2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا