ﻻ يوجد ملخص باللغة العربية
Given a group $Gamma$ acting on a set $X$, a $k$-coloring $phi:Xto{1,dots,k}$ of $X$ is distinguishing with respect to $Gamma$ if the only $gammain Gamma$ that fixes $phi$ is the identity action. The distinguishing number of the action $Gamma$, denoted $D_{Gamma}(X)$, is then the smallest positive integer $k$ such that there is a distinguishing $k$-coloring of $X$ with respect to $Gamma$. This notion has been studied in a number of settings, but by far the largest body of work has been concerned with finding the distinguishing number of the action of the automorphism group of a graph $G$ upon its vertex set, which is referred to as the distinguishing number of $G$. The distinguishing number of a group action is a measure of how difficult it is to break all of the permutations arising from that action. In this paper, we aim to further differentiate the resilience of group actions with the same distinguishing number. In particular, we introduce a precoloring extension framework to address this issue. A set $S subseteq X$ is a fixing set for $Gamma$ if for every non-identity element $gamma in Gamma$ there is an element $s in S$ such that $gamma(s) eq s$. The distinguishing extension number $operatorname{ext}_D(X,Gamma;k)$ is the minimum number $m$ such that for all fixing sets $W subseteq X$ with $|W| geq m$, every $k$-coloring $c : X setminus W to [k]$ can be extended to a $k$-coloring that distinguishes $X$. In this paper, we prove that $operatorname{ext}_D(mathbb{R},operatorname{Aut}(mathbb{R}),2) =4$, where $operatorname{Aut}(mathbb{R})$ is comprised of compositions of translations and reflections. We also consider the distinguishing extension number of the circle and (finite) cycles, obtaining several exact results and bounds.
Speakers communicate to influence their partners beliefs and shape their actions. Belief- and action-based objectives have been explored independently in recent computational models, but it has been challenging to explicitly compare or integrate them
We provide combinatorial interpretation for the $gamma$-coefficients of the basic Eulerian polynomials that enumerate permutations by the excedance statistic and the major index as well as the corresponding $gamma$-coefficients for derangements. Our
We study maps on the set of permutations of n generated by the Renyi-Foata map intertwined with other dihedral symmetries (of a permutation considered as a 0-1 matrix). Iterating these maps leads to dynamical systems that in some cases exhibit intere
Let $G$ be a connected finite graph. Backman, Baker, and Yuen have constructed a family of explicit and easy-to-describe bijections $g_{sigma,sigma^*}$ between spanning trees of $G$ and $(sigma,sigma^*)$-compatible orientations, where the $(sigma,sig
Given discrete groups $Gamma subset Delta$ we characterize $(Gamma,sigma)$-invariant spaces that are also invariant under $Delta$. This will be done in terms of subspaces that we define using an appropriate Zak transform and a particular partition of