ﻻ يوجد ملخص باللغة العربية
We study a dissipative Bose-Hubbard chain subject to an engineered bath using a superoperator approach based on matrix product operators. The dissipation is engineered to stabilize a BEC condensate wave function in its steady state. We then characterize the steady state emerging from the interplay between incompatible Hamiltonian and dissipative dynamics. While it is expected that interactions lead to this competition, even the kinetic energy in an open boundary condition setup competes with the dissipation, leading to a non-trivial steady state. We also present results for the transient dynamics and probe the relaxation time revealing the closing of the dissipative gap in the thermodynamic limit.
The implementation of a combination of continuous weak measurement and classical feedback provides a powerful tool for controlling the evolution of quantum systems. In this work, we investigate the potential of this approach from three perspectives.
We provide evidence that a clean kicked Bose-Hubbard model exhibits a many-body dynamically localized phase. This phase shows ergodicity breaking up to the largest sizes we were able to consider. We argue that this property persists in the limit of l
Entanglement is an essential property of quantum many-body systems. However, its local detection is challenging and was so far limited to spin degrees of freedom in ion chains. Here we measure entanglement between the spins of atoms located on two la
Quantum trajectories and superoperator algorithms implemented within the matrix product state (MPS) framework are powerful tools to simulate the real-time dynamics of open dissipative quantum systems. As for the unitary case, the reachable time-scale
We study the dynamics of an interacting Bose-Hubbard chain coupled to a non-Markovian environment. Our basic tool is the reduced generating functional expressed as a path integral over spin-coherent states. We calculate the leading contribution to th